992 resultados para Energy Substrates
Resumo:
Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of triangular-shaped dot-like (TD) structures grown by molecular beam epitaxy on GaAs (311)A substrates patterned with square- and triangular-shaped holes is compared. On substrates patterned with square-shaped holes, TD structures are formed via the pinch-off of two symmetrically arranged {111} planes which develop freely in the regions between the holes on the original substrate surface, while the (111)A sidewalls of the as-etched holes develop a rough morphology during growth. The evolution of the rough ( 1 1 1)A sidewalls is eliminated on substrates patterned with triangular shaped holes resulting in similar TD structures with highly improved uniformity over the entire pattern. Spectrally and spatially resolved cathodoluminescence spectroscopy reveals the lateral variation of the quantum-well confinement energy in the TD structures generating distinct lateral energy barriers between the top portion and the nearby smooth regions with efficient radiative recombination. Formation of TD structures provides a new approach Do fabricate three-dimensionally confined nanostructures in a controlled manner.
Resumo:
InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.
Resumo:
An effective approach to enhance the light output power of InGaN/GaN light emitting diodes (LED) was proposed using pyramidal patterned sapphire substrates (PSS). The sapphire substrates were patterned by a selective chemical wet etching technique. GaN-based LEDs were fabricated on patterned sapphire substrates through metal organic chemical deposition (MOCVD). The LEDs fabricated on patterned sapphire substrates exhibit excellent device performance compared to the conventional LEDs fabricated on planar sapphire substrates in the case of the same growth and device fabricating conditions. The light output power of the LEDs fabricated on patterned sapphire substrates was about 37% higher than that of LEDs on planar sapphire substrates at an injection current of 20 mA. The significant enhancement is attributable to the improvement of the quality of GaN-based epilayers and improvement of the light extraction efficiency by patterned sapphire substrates.
Resumo:
We investigate the relation between the thickness of sapphire substrates and the extraction efficiency of LED. The increasing about 5% was observed in the simulations and experiments when the sapphire thickness changed from 100um to 200um. But the output power increasing is inconspicuous when the thickness is more than 200um. The structure on bottom face of sapphire substrates can enhance the extraction efficiency of GaN-based LED, too. The difference of output power between the flip-chip LED with smooth bottom surface and the LED with roughness bottom surface is about 50%, where only a common sapphire grinding process is used. But for those LEDs grown on patterned sapphire substrate the difference is only about 10%. Another kind of periodic pattern on the bottom of sapphire is fabricated by the dry etch method, and the output of the back-etched LEDs is improved about 50% than a common. case.
Resumo:
Photoluminescence (PL) and absorption experiments were carried out to examine the fundamental band-gap of InN films grown on silicon substrates. A strong PL peak at 0.78 eV was observed at room temperature, which is much lower than the commonly accepted value of 1.9 eV. The integrated PL intensity was found to depend linearly on the excitation laser intensity over a wide intensity range. These results strongly suggest that the observed PL is related to the emission of the fundamental inter-band transitions of InN rather than to deep defect or impurity levels. Due to the effect of band-filling with increasing free electron concentration, the absorption edge shifts to higher energy. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A novel in-plane bandgap energy controlling technique by ultra-low pressure (22 mbar) selective area growth (SAG) has been developed. To our knowledge, this is the lowest pressure condition during SAG process ever reported. In this work, high crystalline quality InGaAsP-InP MQWs with a photoluminescence (PL) full-width at half-maximum (FWHM) of less than 35meV are selectively grown on mask-patterned planar InP substrates by ultra-low pressure (22 mbar) metal-organic chemical vapor deposition (MOCVD). In order to study the uniformity of the MQWs grown in the selective area, novel tapered masks are designed and used. Through optimizing growth conditions, a wide wavelength shift of over 80 nm with a rather small mask width variation (0-30 mu m) is obtained. The mechanism of ultra-low pressure SAG is detailed by analyzing the effect of various mask designs and quantum well widths. This powerful technique is then applied to fabricate an electroabsorption-modulated laser (EML). Superior device characteristics are achieved, such as a low threshold current of 19mA and an output power of 7mW. (c) 2005 Elsevier B.V. All rights reserved.
OPTICAL CHARACTERISTICS OF GAAS/ALGAAS RIDGE-QUANTUM-WELL-WIRES GROWN BY MBE ON NONPLANAR SUBSTRATES
Resumo:
With conventional photolithography and wet chemical etching, we have realized GaAs/AlGaAs buried ridge-quantum-well-wires (RQWWs) with vertically stacked wires in lateral arrays promising for device application, which were grown in situ by a single-step molecular beam epitaxy growth and formed at the ridge tops of mesas on nonplanar substrates. Confocal photoluminescence (CPL) and polarization-dependent photoreflectance (PR) are applied to study optical characteristics of RQWWs. Lateral bandgap modulation due to lateral variation of QW layer thickness is demonstrated not only by CPL but also by PR. As one evidence for RQWWs, a large blue shift is observed at the energy level positions for electronic transitions corresponding to quantum wells (QWs) at the ridge tops of mesas compared with those corresponding to QWs on nonpatterned areas of the same sample. The blue shift is in contradiction with the fact that the GaAs QW layers at the tops of the mesas are thicker than those on nonpatterned areas. The other evidence for RQWWs, optical anisotropy is provided by the polarization-dependent PR, which results from lateral quantum size effect existing at the tops of the mesas.
Resumo:
The Mass Analyzed Low Energy Dual Ion Beam Epitaxy (MALE-DIBE) system has been designed and constructed in our laboratory. We believe that the system, which was installed and came into full operation in 1988, is the first facility of this kind. With our system we have carried out studies, for the first time, on compound synthesis of GaN and CoSi2 epitaxial thin films. RHEED and AES results show that GaN films, which were deposited on Si and sapphire substrates, are monocrystalline and of good stoichiometry. To our knowledge, GaN film heteroepitaxially grown on Si. which is more lattice-mismatched than GaN on sapphire, has not been reported before by other authors. RBS and TEM investigations indicated a rather good crystallinity of CoSi2 with a distinct interface between CoSi2 and the Si substrate. The channelling minimum yield chi(min) from the Co profile is approximately 4%. The results showed that the DIBE system with simultaneous arrival of two beams at the target is particularly useful in the formation of novel compounds at a relatively low substrate temperature.
Resumo:
An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.
Resumo:
Low-temperature photoluminescence and excitation spectra from InAs monolayer quantum structures, grown on (311)A, (311)B, and (100) GaAs substrates, are investigated, The structures were grown simultaneously by conventional molecular-beam epitaxy (MBE), The experimental results show that the quality of InAs monolayer on (311)B GaAs substrate is obviously better in crystal quality than those on the two other oriented GaAs substrates. In addition, the transition peaks of the InAs layer grown on (311) GaAs substrates shift to higher energy with respect to that from the InAs layer grown on (100) GaAs substrate.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
Using Transmission Electron Microscopy, we studied the misfit and threading dislocations in InAs epilayers. All the samples, with thickness around 0.5 mu m, were grown on GaAs(001) substrates by molecular beam epitaxy under As-rich or in-rich conditions. The As-rich growth undergoes 2D-3D mode transition process, which was inhibited under In-rich surface. High step formation energy under As-deficient reconstruction inhibits the formation of 3D islands and leads to 2D growth. The mechanism of misfit dislocations formation was different under different growth condition which caused the variation of threading dislocation density in the epilayers.
Resumo:
Cubic GaN/GaAs(0 0 1) epilayers and hexagonal inclusions are characterized by X-ray diffraction (XRD), Photoluminescence (PL), Raman spectroscopy, and transmission electron microscopy (TEM). The X-ray {0 0 0 2} and (1 0 (1) over bar 0) pole figures show that the orientation relationships between cubic GaN and hexagonal inclusions are (1 1 1)//(0 0 0 1), <1 1 2 >//<1 0 (1) over bar 0 >. The distribution of hexagonal inclusions mainly results from the interfacial bonding disorder in the grain boundaries parallel to hexagonal <0 0 0 1 > directions and the lattice mismatch in <0 0 0 1 > directions on {1 0 (1) over bar 0} planes. In order to reduce the energy increase in cubic epilayers, hexagonal lamellas with smaller sizes in <0 0 0 1 > directions often nucleate inside the buffer layer or near the interface between the buffer layer and the epitaxial layer, and penetrate through the whole epitaxial layer with this orientation relationship. (C) 2001 Elsevier Science B.V. All rights reserved.