927 resultados para Energy(all)
Resumo:
In the 1980s the development of the doubly labelled water (DLW) technique made it possible to determine the validity of dietary assessment methods using external, independent markers of intake in free-living populations. Since then, the accuracy of self-reported energy intake (EI) has been questioned on a number of occasions as under-reporting has been found to be prevalent in many different populations. This paper is a review of investigations using the DLW technique in conjunction with self-reported EI measures in groups including adults, children and adolescents, obese persons, athletes, military personnel and trekking explorers. In studies where a person other than the subject is responsible for recording dietary intake, such as parents of young children, EI generally corresponds to DLW determined energy expenditure. However, in instances where the subjects themselves report their intake, EI is generally under-reported when compared with energy expenditure. It was originally believed that this phenomenon of under-reporting was linked to increased adiposity and body size, however, it is now apparent that other factors, such as dietary restraint and socio-economic status, are also involved. This paper therefore aims to present a more comprehensive picture of under-reporting by tying in the findings of many DLW studies with other studies focusing particularly on the characteristics and mechanisms for under-reporting. Awareness of these characteristics and mechanisms will enable researchers to obtain more accurate self-reports of EI using all dietary recording techniques.
Resumo:
Eggs from the Heron Island, Great Barrier Reef, nesting population of green turtles (Chelonia mydas) were incubated at all-male-determining (26 degreesC) and all-female-determining (30 degreesC) temperatures. Oxygen consumption and embryonic growth were monitored throughout incubation, and hatchling masses and body dimensions were measured from both temperatures. Eggs hatched after 79 and 53 days incubation at 26 degreesC and 30 degreesC respectively. Oxygen consumption at both temperatures increased to a peak several days before hatching, a pattern typical of turtle embryos, and the rate of oxygen was higher at 30 degreesC than 26 degreesC. The total amount of energy consumed during incubation, and hatchling dimensions, were similar at both temperatures, but hatchlings from 26 degreesC had larger mass, larger yolk-free mass and smaller residual yolks than hatchlings from 30 degreesC. Because of the difference in mass of hatchlings, hatchlings from 30 degreesC had a higher production cost.
Resumo:
A group of 31 young females, tennis players and non-athletes, aged 16 2 years (range: 14 - 21 years), with a wide range of physical activity levels was used to investigate the relationship between total daily energy expenditure and the incidence of upper respiratory tract infection symptoms. Methods: During a 12 week winter period, habitual daily activity (excluding training) was evaluated using a 3-day physical activity record. Tennis training was quantified using a validated method of estimating energy expenditure during play. Total daily energy expenditure was calculated from the sum of daily training plus mean habitual daily activity energy expenditures. The total group of subjects was divided in quartiles for total daily energy expenditure. A validated symptom checklist was used to assess the incidence and severity of upper respiratory tract infections, on a daily basis. Results: The girls in the highest quartile of total daily energy expenditure (greater than or equal to 17322 kJ/day) and in the lowest quartile (less than or equal to 10 047 kJ/day) had the greatest incidence of URTI symptomatology, although the moderately active girls in quartile three (12290-16410 kJ/day) presented the lowest incidence. Significant differences in number of upper respiratory tract infection episodes, sickness days and symptomatology index were found between quartiles three and one (p < 0.05) and quartiles three and four (p < 0.01). Peak severity of symptoms was significantly lower in quartile three compared with all other quartiles (p < 0.05).
Resumo:
In the last 7 years, a method has been developed to analyse building energy performance using computer simulation, in Brazil. The method combines analysis of building design plans and documentation, walk-through visits, electric and thermal measurements and the use of an energy simulation tool (DOE-2.1E code), The method was used to model more than 15 office buildings (more than 200 000 m(2)), located between 12.5degrees and 27.5degrees South latitude. The paper describes the basic methodology, with data for one building and presents additional results for other six cases. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An energy-based swing hammer mill model has been developed for coke oven feed preparation. it comprises a mechanistic power model to determine the dynamic internal recirculation and a perfect mixing mill model with a dual-classification function to mimic the operations of crusher and screen. The model parameters were calibrated using a pilot-scale swing hammer mill at various operating conditions. The effects of the underscreen configurations and the feed sizes on hammer mill operations were demonstrated through the fitted model parameters. Relationships between the model parameters and the machine configurations were established. The model was validated using the independent experimental data of single lithotype coal tests with the same BJD pilot-scale hammer mill and full operation audit data of an industrial hammer mill. The outcome of the energy-based swing hammer mill model is the capability to simulate the impact of changing blends of coal or mill configurations and operating conditions on product size distribution. Alternatively, the model can be used to select the machine settings required to achieve a desired product. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background: A knowledge of energy expenditure in infancy is required for the estimation of recommended daily amounts of food energy, for designing artificial infant feeds, and as a reference standard for studies of energy metabolism in disease states. Objectives: The objectives of this study were to construct centile reference charts for total energy expenditure (TEE) in infants across the first year of life. Methods: Repeated measures of TEE using the doubly labeled water technique were made in 162 infants at 1.5, 3, 6, 9 and 12 months. In total, 322 TEE measurements were obtained. The LMS method with maximum penalized likelihood was used to construct the centile reference charts. Centiles were constructed for TEE expressed as MJ/day and also expressed relative to body weight (BW) and fat-free mass (FFM). Results: TEE increased with age and was 1.40,1.86, 2.64, 3.07 and 3.65 MJ/day at 1.5, 3, 6, 9 and 12 months, respectively. The standard deviations were 0.43, 0.47, 0.52, 0.66 and 0.88, respectively. TEE in MJ/kg increased from 0.29 to 0.36 and in MJ/day/kg FFM from 0.36 to 0.48. Conclusions: We have presented centile reference charts for TEE expressed as MJ/day and expressed relative to BW and FFM in infants across the first year of life. There was a wide variation or biological scatter in TEE values seen at all ages. We suggest that these centile charts may be used to assess and possibly quantify abnormal energy metabolism in disease states in infants.
Resumo:
Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the protection of wind energy systems against the indirect effects of lightning. As wind energy is gaining increasing importance throughout the world, lightning damages involving wind energy systems have come to be regarded with more attention. Nevertheless, there are still very few studies in Portugal regarding lightning protection of wind energy systems using models of the Electro-Magnetic Transients Program (EMTP). Hence, a new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, considering that lightning strikes the soil near the tower at a distance such that galvanic coupling occurs through the grounding electrode. Computer simulations obtained by using EMTP-RV are presented and conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The increasing use of distributed generation units based on renewable energy sources, the consideration of demand-side management as a distributed resource, and the operation in the scope of competitive electricity markets have caused important changes in the way that power systems are operated. The new distributed resources require an entity (player) capable to make them able to participate in electricity markets. This entity has been known as Virtual Power Player (VPP). VPPs need to consider all the business opportunities available to their resources, considering all the relevant players, the market and/or other VPPs to accomplish their goals. This paper presents a methodology that considers all these opportunities to minimize the operation costs of a VPP. The method is applied to a distribution network managed by four independent VPPs with intensive use of distributed resources.
Resumo:
Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.