293 resultados para Energian talteenotto
Resumo:
Työssä tarkastellaan kompostointiin perustuvaa biotermistä kuivausprosessia, prosessiin vaikuttavia tekijöitä sekä sen soveltuvuutta metsäteollisuuden mekaanisesti kuivatun jätevesilietteen lisäkuivaukseen polttoa varten. Tutkimukseen kuuluvien paperitehtaiden lietteillä suoritettavien biotermisten kuivauskokeiden avulla tutkitaan tehtaiden lietteiden sopivuutta biotermiseen kuivaukseen. Lisäksi tehtaille suunnitellaan kuivauskokeiden ja paperitehtailla tehtävien selvitysten perusteella bioterminen kuivauslaitos. Suomen metsäteollisuus tuottaa nykyisin noin 400 000 – 500 000 kuiva-ainetonnia jätevedenpuhdistamolietteitä vuosittain. Tutkimukseen kuuluvan kahden tehdasintegraatin biologisilla puhdistamoilla syntyvien jätevesilietteiden määrät ovat keskimäärin 33 000 ja 15 000 kuiva-ainetonnia vuodessa. Ongelmana metsäteollisuudessa on jätevesilietteen alhainen kuiva-ainepitoisuus lietteen mekaanisen kuivauksen jälkeen. Tämä vaikeuttaa lietteen polttamista voimalaitoskattilassa ja lietteen poltosta talteen saatavan energian määrä jää vähäiseksi. Mekaanisesti kuivatun sekalietteen käsittely biotermisesti kuivaamalla mahdollistaa lietteen kuiva-ainepitoisuuden nostamisen yli 55 %:in kuiva-ainepitoisuuteen. Tämä helpottaa lietteen polton ongelmia ja kasvattaa lietteen poltosta talteen saatavan energian määrää. Bioterminen kuivaus soveltuu hyvin tutkimukseen kuuluvien tehtaiden sekalietteen kuivaukseen. Suositeltava sekalietteen lähtökuiva-ainepitoisuuden arvo on välillä 30 – 35 % ja tukiaineeksi lisättävän kuoren määrä noin 0,5 m3 yhtä lietekuutiota kohden. Kuivausprosessin kesto on tällöin 10 – 14 vuorokautta, kun haluttu lietepolttoaineen kuiva-ainepitoisuus on vähintään 55 %. Tehtaille suunnitelluissa laitoksissa käsiteltävä lietemäärä on noin 40 000 märkätonnia vuodessa. Tutkimukseen kuuluvalle paperitehtaalle yhdistetyn lietteenkuivausprosessin kustannukset ovat edullisimmat kun liete kuivataan ennen biotermistä kuivausta mekaanisesti 35 %:in kuiva-ainepitoisuuteen. Tällöin lietteenkäsittelyn hinnaksi tulee noin 150 mk/t.
Resumo:
Diplomityössä tutkittiin kuuman pyrolyysihöyryn puhdistamista haisevista ja kevyistä haihtuvista yhdisteistä. Työn kirjallisuusosassa selvitettiin pyrolyysiöljyn kannattavuutta uusiutuvana energialähteenä. Lisäksi eri pesurityyppejä tarkasteltiin ja ja vertailtiin. Työn kokeellisessa osassa käytettiin kahta erilaista koelaitteistoa. Tuotteen talteenotossa vertailtiin reaktorilämpötilan ja raaka-aineen kosteuden vaikutusta pyrolyysisaantoihin. Komponenttien talteenotossa tutkittiin epästabiilien ja pistävän hajuisten yhdisteiden poistamista kuumasta pyrolyysihöyrystä. Raaka-aineena käytettiin kuusen metsätäh-dehaketta, joka sisältää runsaasti neulasia ja kaarnaa. Kokeet toteutettiin lämpötila-alueella 460 - 520 °C. Koelaitteistot koostuivat kaasun (N2) syöttöjärjestelmään kytketystä kuumasta ja kyl-mästä puolesta. Tuotteen talteenotossa kuuma pyrolyysihöyry jäähdytettiin ja otettiin talteen. Komponenttien talteenotossa tuote kerättiin suodattimelle ja metyleeniklo-ridiloukkuun. Tuotteiden koostumukset analysoitiin kaasukromatokrafilla. Korkeimmat orgaaniset saannot saatiin 480 °C reaktorilämpötilalla ja 8-9 p-% raaka-ainekosteudella. Pyrolyysiveden määrä putosi raaka-aineen kosteutta nostettaessa. Eri reaktorilämpötiloilla ja raaka-ainekosteuksilla ei ollut vaikutusta hiiltosaantoihin. Kaasusaannot (pääosin CO2, CO ja hiilivedyt) olivat noin 10 p-%. Komponenttien talteenotossa suodatin tukkeutui matalissa (< 250 °C) lämpötiloissa. Suodattimelle jäänyt materiaali oli pääosin neulasista ja kaarnasta peräisin olevia uuteaineita (pääosin hartsi- rasvahappoja) ja sokereita. Korkeimmissa lämpötiloissa (> 250 °C) uuteaineet läpäisivät suodattimen paremmin. 250 ja 300 °C:n lämpötiloissa suuri määrä lyhytketjuisia helposti haihtuvia epästabiileja ja haisevia yhdisteitä (ketoneja, furaani- ja furfuraalijohdannaisia jne.) jäi metyleenikloridi- ja metanoliloukkuihin.
Resumo:
Tehokkaimpia keinoja vähentää rakennusten lämmitysenergian kulutusta ja lämmityksen aiheuttavia hiilidioksidi- ja happamoitavia päästöjä on tiukentaa rakentamismääräysten lämmöneristysvaatimuksia. Hyvin lämmöneristetyissä, tiiveissä ja ilmanvaihdoltaan optimoiduissa taloissa on pienet lämpöhäviöt. Näin ympäristöä kuormittava vaikutus saadaan paljon vähemmäksi kuin nykynormien mukaisissa asuinrakennuksissa. Johtumislämpöhäviö pienenee suoraan eristekerroksia paksuntamalla ja siihen on helpointa vaikuttaa. Mitä suurempiin eristepaksuuksiin mennään sen suuremmaksi tulee konvektion osuus kokonaislämpöhäviöstä. Tulevaisuudessa parempia ratkaisuja haetaan erityisesti konvektiosta ja säteilystä aiheutuvien lämpöhäviöiden pienentämiseksi. Eristeen osastointi ilmanpitävillä, vesihöyryä diffuusisesti läpäisevillä pystysuuntaisilla konvektiokatkoilla vähentää tehokkaasti paksun seinäeristeen kuljettumis-ilmavirtauksia. Katkoina käytetään erilaisia kalvoja ja rakennuspapereita, joilla on pieni emissiviteetti. Katkojen merkitys kasvaa, kun mennään uusien normien mukaisiin eristepaksuuksiin. Lämmöneriste voidaan toteuttaa myös kokoamalla ohuita kalvoja paketiksi, jotka jakavat ilmatilan ja siis eristeelle varatun paksuuden suljettuihin ilmaväleihin. Kun kalvoiksi valitaan pieniemissiviteettisiä pintoja, saadaan säteilylämmönsiirto lähes eliminoiduksi. Tällaisen ilmatilan lämmönjohtumisluku lähestyy paikallaan pysyvän ilman lämmönjohtumislukua, l = 0,025 W/Km, eli tällä rakennesysteemillä on mahdollista toteuttaa ohuempia rakenteita kuin perinteisillä eristeillä. Hygroskooppisen massan käyttö sisäilman kosteutta tasaavana rakenteena voi olla tulevaisuutta. Kehitystyö tuottaa uusia, kosteusteknisesti toimivia sovelluksia. Toisaalta palomääräykset tulevat kehitystyötä vastaan. Hygroskooppinen pintamateriaali on kevyt (pieni tiheys) ja paloteknisesti arka. Suoraa sähkölämmitystä ei voida pitää ympäristöystävällisenä. Sen jalostusketju on pitkä ja monivaiheinen. Millä peruspolttoaineella sähköä tuotetaan, vaikuttaa asiaan luonnollisestikin. Suoraa sähkölämmitystä voidaan suositella vain yksinäisen ihmisen taloudessa lämmitysmuotona taloudellisista syistä. Halvan polttoaineen säästöllä ei voida maksaa suuria laiteinvestointeja. Aurinkoenergian hyvä hyödyntäminen edellyttää hyvää säätöä, joka kytkee lämmityksen pois päältä silloin, kun aurinko lämmittää. Auringon hetkelliset säteilytehot ovat suuria verrattuna rakenteen lämpöhäviöihin ja huonetilojen lämmöntarpeeseen. Ratkaisu aurinkoenergian hetkellisyyteen ja paikallisuuteen on energian siirtäminen lämmöntarpeen mukaan rakennuksen eri osiin ja sen varastoiminen päivätasolla. Kun varastoivasta massasta ei ole suoraa yhteyttä ulos, voidaan kerääjäeristeeltä saatu lämpö käyttää häviöttömästi huonetilojen lämmittämiseen. Vaikka lämmitysenergian käytössä päästään 30 % vähennyksiin uudisrakennusten osalta, ei kokonaisenergian käyttö merkittävästi pienene, jos taloussähkön kulutus pysyy vakiona. Sama pätee myös CO2 -päästöihin. Saavutettava etu lämmitys-energian kulutuksessa voidaan hukata yhä suurenevaksi taloussähkön käytöksi, mikä olisi erityisen huono asia ympäristön kannalta.
Resumo:
Työssä mallinnettiin kevyesti päällystettyjä aikakauslehtipapereita valmistavan paperikoneen vesikierrot Balas-ohjelman avulla. Mallin avulla selvitettiin paperikoneelle suunniteltujen muutosten vaikutuksia haitallisten aineiden tasoihin, muihin mallinnettuihin parametreihin ja vedenkulutukseen. Mallin luotettavuutta testattiin käytännössä tehdyillä muutoksilla. Vesinäytteistä haitallisina aineina tarkasteltiin lipofiilisten uuteaineiden, kalsiumin, alumiinin, raudan, piin ja sulfaatin pitoisuuksia. Pohjapaperinäytteistä määritettiin lipofiilisten uuteaineiden sekä kalsiumin ja alumiinin pitoisuudet. Paperikoneelle suunniteltuja muutoksia olivat kiekkosuodattimien kirkkaan suodoksen käyttö viiraosan suihkuvetenä ja päällystyksen yhteydessä syntyvän pastajätteen käyttö pohjapaperin täyteaineena. Kirkkaan suodoksen käytön lisäämisellä pyrittiin vähentämään raakaveden käyttöä. Pastajäte sisältää arvokkaita raaka-aineita, jotka kannattaisi hyödyntää paperitehtaalla. Nykyisin pastajäte kuljetetaan läjitysalueelle. Balas-mallin todettiin mallintavan melko luotettavasti liuenneiden haitallisten aineiden pitoisuuksien sekä muista parametreista muun muassa sakeuden ja tuhkapitoisuuden muutoksia. Pastajätteen palautuksen mallinnuksessa haitallisten aineiden pitoisuudet laskivat prosessissa. Tämä toteutui koeajossa, koska jätepastasta suurin osa oli vettä, joka huuhtoi prosessia. Kirkkaan suodoksen käyttö suihkuvetenä ei nostanut epäorgaanisten haitallisten aineiden pitoisuuksia niin paljon kuin malli ennusti. Todennäköisesti haitalliset aineet saostuivat tai poistuivat tuotteen mukana prosessista. Kirkassuodos-koeajon aikana otetussa pohjapaperinäytteessä kiinteän kalsiumin pitoisuus oli 40 % ja kiinteän alumiinin pitoisuus 11 % korkeampi mutta uuteaineiden pitoisuus 20 % alhaisempi kuin referenssipohjapaperissa.
Resumo:
Tässä työssä on selvitetty sellutehtaan höyryverkosta tehtaan ulkopuolelle myytävän ylijäämähöyryn määrän ja paineen nopeaan vaihteluun vaikuttavia tekijöitä. Työssä on tarkasteltu höyryn kehityksen ja kulutuksen vaihtelun vaikutusta ylijäämähöyryyn. Lisäksi on tarkasteltu mahdollisuuksia edellä mainittujen häiriöiden tasaamiseksi. Työssä on selvitetty teoriaa, joka vaikuttaa sellutehtaan höyryn kehitykseen ja kulutukseen. Lisäksi on selvitetty energiataselaskennan ja höyryverkon hallintaa parantavien toimenpiteiden teoriaa. Omana kokonaisuutena on sellutehtaan höyryn kehityksen ja kulutuksen tarkastelu sekä selvitys tehtaan höyryverkon hallinnan nykytilasta. Höyryverkolle on muodostettu energiatase. Työn tuloksia varten on kerätty ja tallennettu mittapistetietoa tiedonkeräysjärjestelmän avulla eri höyryverkon mittapisteistä. Työn tuloksina on mainittu useita höyryverkon hallintaa parantavia toteutuskelpoisia asioita ja toimenpiteitä. Työllä on luotu pohjaa menetelmälle, joka ohjaa energian kehitystä vastaamaan sellun tuotannon tarvitsemaa energiamäärää. Samalla saataisiin paremmin hallittua ylijäämähöyryä ja sen määrän sekä paineen vaihtelu vähentyisi.
Resumo:
Tässä diplomityössä on suunniteltu ja toteutettu tuotannon optimointijärjestelmä Kotkan Energia Oy:n tuotantolaitoksille sekä osto- ja myyntisopimuksille. Työssä on kerätty ja laskettu Kotkan Energian tuotantolaitosten teknisiä ja suunnittelutietoja, sekä esitelty eri laitteiden ja tuotantolaitosten toimintaa. Lisäksi on käyty läpi kaukolämmön ja prosessihöyryn kulutusta, kulutuksien ennustamista ja tuotantojärjestelmiä, sekä sähkökauppaa ja laitoksilla käytettävien polttoaineiden ominaisuuksia ja hintoja. Voimalaitoksen laitteille on laskettu hyötysuhteet ja tuotteiden hinnat erilaisilla kuormilla. Laskelmien avulla on tehty polynomisovitteet laitteiden hyötysuhteille. Polynomisovitteet ja muu laitosten toiminnasta kerätty ja laskettu tieto on siirretty Kotkan Energian tietohallintopäällikön kanssa yhteistyössä kehitettyyn tietokonepohjaiseen optimointiohjelmaan. Myös optimoinnin teoriaa ja menetelmiä on käyty lyhyesti läpi. Optimointiohjelman avulla pystytään nyt laskemaan erilaisten kaukolämmön, prosessihöyryn ja sähkön hintojen ja kulutusten mukaisia optimaalisia ajotapoja Hovinsaaren voimalaitoksen tuotannolle ja hankintasopimuksille. Optimointiohjelmalla pyritään maksimoimaan energiantuotannon kokonaistuottoa tai minimoimaan tuotantokustannuksia annettujen ja ennustettujen alkuarvojen mukaisesti. Ohjelman antamia tuloksia voidaan käyttää apuna esimerkiksi tuotannon suunnittelussa ja budjetoinnissa. Laskelmat ja ohjelman kehittäminen ovat onnistuneet hyvin ja ohjelman käyttämisestä ja testaamisesta saadut tulokset vaikuttavat oikeanlaisilta ja luotettavilta. Optimointiohjelma on nyt käytössä ja jatkokehittely jatkuu myös diplomityön valmistumisen jälkeen.
Resumo:
Kun sellun tuotantomäärä kasvaa, niin klooridioksidin kulutus valkaisussa kasvaa. Ja kun klooridioksidin tuotanto kasvaa, niin sivutuotteena syntyvän hapansuolan määrä kasvaa. Hapansuolaa lisätään kemikaalikiertoon niin paljon kuin mahdollista ilman, että valkolipeän sulfiditeetille määritetty yläraja 38 % ylittyy. Rikin ja natriumin suhde hapansuolassa on huomattavasti suurempi kuin valkolipeässä, joten hapansuolan talteenotto lisää kemikaalikierron rikkipitoisuutta, jolloin myös sulfiditeetti kasvaa. Ylimääräinen hapansuola poistetaan jätevedenpuhdistamolle. Työssä lasketaan eri osastoilla käytettävien kemikaalien koostumuksia ja tuotantomääristä johtuvia muutoksia kemikaalikierrossa, joiden avulla lasketaan mm. kemikaalikierron sallima hapansuolan talteenottomäärä. Lisäksi tutustutaan erilaisiin vaihtoehtoihin, joilla hapansuolan poistamista jätevedenpuhdistamolle voitaisiin pienentää. Simuloidun lokakuun 2002 tuotannosta saatavilla arvoilla saatiin laskennalliseksi hapansuolan poistomääräksi 2115 tonnia, kun muodostuva kokonaismäärä oli 2545 tonnia.
Resumo:
Ihmisen toiminnan vaikutus ilmakehään johtaa todennäköisesti ilmastonmuutoksiin. Eräs näistä muutoksista on maapallon keskilämpötilan nousu, joka aiheutuu kasvihuonekaasujen lisääntyneestä pitoisuudesta ilmakehässä. Vaikutusten vähentämiseksi on hiilidioksidipäästöjä vähennettävä. Kioton pöytäkirja asettaa allekirjoittaneille maille päästövelvoitteet. Euroopan unionin tulee vähentää kasvihuonekaasupäästöjään 8%:lla. Eräs vähennysmekanismeista on päästökauppa. Päästökauppa on sekä keino suojella ympäristöä että ympäristöpoliittinen instrumentti kasvihuonekaasupäästövähennysten kustannusten keventämiseksi. Päästökauppa ei suoranaisesti vähennä kasvihuonekaasupäästöjä, vaan tasaa niitä maiden ja laitosten välillä. Uusiutuvan energian käytön edistäminen sekä kansainvälisesti että kansallisesti johtaa suoriin kasvihuonekaasupäästöjen vähenemiseen. Euroopan unionin jäsenvaltiot ovat asettaneet kansalliset viitearvot uusituvan sähkön kulutukselle. Saavuttaakseen nämä viitearvot maiden tulee tukea uusiutuvia energialähteitä eri menetelmin kuten vihreillä sertifikaateilla. Päästökauppa ja kaupattavat vihreät sertifikaatit tulevat vaikuttamaan energiantuottajien liiketoimintaan. Työssä on tutkittu päästökaupan ja vihreiden sertifikaattien vaikutuksia Vattenfall Kaukolämpö Oy:n, Vattenfall Sähköntuotanto Oy:n ja Vamy Oy:n liiketoimintaan.
Resumo:
Työssä selvitettiin sulfaattisellutehtaan kemikaalikierron eräiden virtojen vierasainepitoisuudet. Tavoitteena oli myös laatia kaustisoinnin ja meesauunin vierasainetaseet sekä arvioida kalkkikierron aukaisun vaikutusta kierron vierasainetasoihin. Kirjallisuusosassa on tarkasteltu sulfaattisellutehtaan kemikaalikiertoa ja sen osaprosesseja. Kirjallisuusosassa on keskitytty tarkastelemaan eri vierasaineiden käyttäytymistä kemikaalikierrossa. Lisäksi kalkkikierron prosesseja sekä kalkkikierron taselaskentaa on tarkasteltu. Kokeellisessa osassa määritettiin Metsä-Botnia Oy:n Joutseno Pulpin sulfaattisellutehtaan kemikaalikierron vierasainetasot ja verrattiin niitä muiden tehtaiden vierasainetasoihin. Kokeellisessa osassa selvitettiin myös ne prosessin kohdat, joihin vierasaineet rikastuvat. Lisäksi laadittiin kaustisoinnin ja meesauunin vierasainetaseet sekä tehtiin arvio kalkkikierron vierasainetasojen ja kalkkikierron aukaisun välisestä korrelaatiosta. Tehtyjen määritysten perusteella Joutseno Pulpin sulfaattisellutehtaan eräiden prosessivirtojen vierasainetasot ovat selvästi muiden Metsä-Botnian tehtaiden tasoja korkeammalla. Etenkin valkolipeän kaliumpitoisuus ja meesan fosforipitoisuus ovat korkeita. Kloridi rikastuu voimakkaasti soodakattilan lentotuhkaan ja fosfori rikastuu meesauunin sähkösuodinpölyyn. Laadittujen taseiden perusteella vierasaineista fosfori ja magnesium rikastuvat selvästi kalkkikiertoon. Niiden määrät kalkkikierrossa ovat huomattavasti suuremmat kuin muiden vierasaineiden määrät. Kalkkikierron fosforitasoa voidaan alentaa poistamalla kierrosta meesauunin sähkösuodinpölyä ja korvaamalla poisto make-up kalkilla. Tällöin muiden vierasaineiden määrä kalkkikierrossa kuitenkin kasvaa.
Resumo:
Kaukolämpöverkoston lämpötilatason alentaminen kasvattaa sähkösaalista sähkön ja lämmön yhteistuotannossa, pienentää kaukolämpöverkon lämpöhäviöitä ja lisäksi hyvä jäähdytys tuo säästöjä kaukolämpöveden pumppausenergian kulutuksessa. Työssä selvitettiin laskennallisesti kaukolämpöveden lämpötilojen alentamisen vaikutuksia ja niiden tuomia säästöjä Kuopion Energian kaukolämpöjärjestelmässä. Tulokseksi saatiin, että laskemalla paluulämpötilaa yhdellä asteella nousee vuotuinen sähköntuotanto 0,1 %, pienenevät lämpöhäviöt 0,88 % ja pumppausenergian kulutus 7,7 %. Menolämpötilaa laskemalla vaikutukseksi saatiin 0,4 % lisää sähköä ja 0,79 % pienemmät lämpöhäviöt. Työssä käytetyillä sähkön hinnalla 92 mk/MWh ja lämmön hinnalla 61 mk/MWh saatiin tulokseksi, että alentamalla paluulämpötilaa asteella on kokonaishyöty noin 68 700 mk vuodessa ja menolämpötilaa alentamalla 71 500 mk. Asiakkaiden lämmönjakojärjestelmät aikaansaavat jäähdytyksen. Ongelmana on, etteivät nykyiset yleisesti käytössä olevat kaukolämpötariffit ohjaa asiakkaita riittävästi hyvään jäähdytykseen. Asiakkaan jäähdytysmotivaation parantamiseksi tulisi kehittää tariffijärjestelmä, joka selkeästi palkitsisi hyvästä jäähdytyksestä. Työssä selvitettiin asiakaskyselyllä asiakkaiden näkemyksiä nykyisestä kaukolämpötariffista ja mielenkiintoa uusiin tariffivaihtoehtoihin. Kyselyn perustella asiakkaat olisivat motivoituneita jäähdytyksen parantamiseen, jos lämmityskustannusten alennus olisi vähintään 10 %. Meno- ja paluulämpötilan alentamisen taloudellisia hyötyjä asiakasta kohti selvitettiin esimerkkitapauksella. Vertaamalla asiakkaan aikaansaamia taloudellisia hyötyjä hänen lämmityskustannuksiinsa, selvitettiin kuinka suuri alennusprosentti jäähdytyksestä palkitsevassa tariffissa voitaisiin tarjota. Työssä käytetyillä energian hinnoilla ja lämpötilojen alentamistapauksilla asiakkaalle voitaisiin tarjota jäähdytyksestä palkitsevassa tariffissa 1-2 % alennus lämmityskustannuksista.
Resumo:
Kehitettäessä leijupolttotekniikkaa entistä ympäristöystävällisemmäksi ja tehokkaammaksi tarvitaan lisää tietoa polttoaineen käyttäytymisestä tulipesässä. Polttoaineen palamisprofiili ja reaktiivisuus vaikuttavat oleellisesti esimerkiksi voimalaitoskattilan lämmönsiirtopintojen sijoitteluun ja suunnitteluun sekä ohjausjärjestelmän toteutukseen. Varsinkin monipolttoainekattiloilla ohjausjärjestelmän toimivuus joutuu koetukselle esimerkiksi kuormanmuutostilanteissa ja äkillisissä polttoaineen syöttöhäiriöissä. Tässä työssä on aluksi tutustuttu kiertoleijupolton ilmiöihin ja niiden matemaattiseen mallintamiseen. Lisäksi esitetään katsaus eri prosessiolosuhteiden vaikutuksesta palamiseen kiertoleijuolosuhteissa. Työn tutkimusosassa kehitettiin menetelmä polttoaineen reaktiivisuuden määrittämiseksi kiertoleijupoltossa. Kehitetty menetelmä koostuu koesarjasta ja matemaattisesta simulointimallista. Koetoiminta suoritettiin VTT Energian laboratoriokokoluokan kiertoleijukoelaitteella. Koesarja polttoaineen reaktiivisuuden määrittämiseksi sisältää eri kaasukomponenttien profiilimittauksia ja dynaamisia muutoskokeita. Menetelmän avulla voidaan tutkia eri polttoaineiden reaktiivisuuksia sekä polttoaineen reaktiivisuuden ja tietyn prosessiolosuhteen välistä riippuvuutta. Suorittamalla koeajomatriisin mukaiset kokeet tietyissä prosessiolosuhteissa voidaan polttoaineen reaktiivisuus selvittää koetulosten ja simulointimallin perusteella.
Resumo:
Diplomityössä selvitettiin Kuopion Energian kaukolämpöliiketoiminnan kustannusten muodostumista. Tilikartan toimivuutta ja kustannusvastaavuuden toteutumista tarkasteltiin kaukolämpöosaston näkökulmasta. Työssä laaditussa raportointisovelluksessa kustannukset jaoteltiin lämmön hankinnan, jakelun ja myyntitoiminnan kesken. Lisäksi tehtiin jako kiinteisiin ja muuttuviin kustannuksiin. Tällä tarkastelulla selvitettiin, vastaavatko perusmaksujen tulot kiinteitä kustannuksia ja energiamaksujen tulot muuttuvia kustannuksia. Energiamarkkinoiden vapautumista tarkasteltiin kaukolämpöliiketoiminnan näkökulmasta. Energiamarkkinavirasto on kehittänyt valvontamallin sähköverkkoliiketoiminnan kohtuullisen tuoton mittaamiseksi. Diplomityössä tarkasteltiin mallin soveltamismahdollisuuksia kaukolämpötoimintaan ja selvitettiin Kuopion Energian kaukolämpöliiketoiminnan tuoton kohtuullisuutta.
Resumo:
Diplomityön tavoitteena on määrittää rajahinta Mertaniemen lämmitysvoimalaitoksella tuotetun kaukolämpöenergian korvaamiselle erillishankinnalla Lappeenrannan Energian kannalta tarkasteltuna. Tarkoituksena on muodostaa taulukkolaskentapohjat erilaisille lämmönkorvaustapauksille sekä päivittää kyseisen lämmitysvoimalaitoksen sähköteho/kaukolämpöteho -karakteristikat. Työssä selvitetään myös lämmön erillishankinnan vaikutusta laitoksen ajotapaan. Laadittujen laskentapohjien ja karakteristikoiden avulla arvioitiin erillishankinnan kannattavuutta suunnitellun UPM-Kymmene Oyj:n Kaukaan voimalaitoksen, paikkakunnan teollisuuslaitoksien, Mertaniemen voimalaitoksen kaasukattiloiden sekä Lappeenrannan Energian lämpökeskuksien lämmöntuotannon tapauksissa. Lisäksi työssä tehtiin kustannuslaskelma kiinteälle lämpökeskukselle sekä laadittiin optimointilaskelma lämmöntuotannon polttoaineiden käytölle. Tuloksiksi saatiin, että yhteistuotanto on erillishankintaa paljon edullisempaa kaikissa tapauksissa. Kaukaan voimalaitoshankkeesta Lappeenrannan Energia jättäytyi täten toistaiseksi pois. Paikkakunnan teollisuuslaitoksilta ostetaan lämpöä edelleen, koska se on todettu edulliseksi yhteistuotannon seisokkien aikaan. Lappeenrantaan suunnitellaan uutta kiinteää lämpökeskusta, mutta sen käyttö korvaamaan yhteistuotantoa ei kannata nykyisillä polttoaineen hinnoilla.
Resumo:
Työssä mallinnettiin kombivoimalaitoksen lämmöntalteenottokattila Apros-simulointiohjelmalla. Simulointimalli valmistettiin vastaamaan Helsingin Energian Vuosaari B:n voimalaitoksen lämmöntalteenottokattilaa, joka toimii kahdella painetasolla. Kattila on Foster Wheelerin valmistama. Ennen mallinnuksen aloittamista tutustuttiin laitoksen termodynamiikkaan, jolloin saatiin riittävä teoreettinen tieto koko laitoksen toiminnasta. Kattilan reunaehtoina ovat kaasuturbiiniprosessi ja laitoksen höyrykierto. Kaasuturbiini korvattiin laskentayhtälöillä, jotka antavat alkuarvot mm. savukaasun massavirralle ja lämpötilalle ennen kattilaa kaasuturbiinin tehon funktiona. Kattila liitetään höyrykiertoon tuorehöyry- ja syöttövesilinjasta, jolloin reunaehtoina annetaan lämpötilat ja paineet massavirroille. Valmistettua mallia testattiin ylösajo- ja kuormanmuutostilanteessa. Ylösajotilanteessa saatuja laskentatuloksia verrattiin todellisen laitoksen mittaustuloksiin, jolloin varmistuttiin simulointimallin oikeasta fysikaalisesta toiminnasta. Kuormanmuutostilanteissa kaasuturbiinin tehoa muutettiin ja samalla seurattiin kattilan reagointia muutostilanteessa. Kuormanmuutosmittauksessa varmistettiin vielä, että kattila reagoi kuormanmuutokseen oikealla tavalla, eikä muutos aiheuta kattilan toiminnalle haitallista värähtelyä.
Resumo:
Ydinvoimalaitosten turvallisuusanalyysit tehdään nykyisin pääasiassa tietokoneohjelmistoilla. Turvallisuusanalyyseissä käytetyt ohjelmistot ja niillä tehdyt mallit pitää kelpoistaa, jotta mallilla saatuja tuloksia voidaan pitää luotettavina. PACTEL-koelaitteistolla tehdään turvallisuustutkimusta, joka palvelee erityisesti Loviisan VVER-440 -tyyppisiä voimalaitoksia. APROS-koodi kehitettiin Loviisan voimalaitoksen turvallisuusanalyysejä varten. Jotta APROS-koodi voitaisiin kelpoistaa rakennettiin PACTEL-koelaitteisto kokeellista termohydrauliikkatutkimusta varten. Koelaitteiston tuloksia käytettiin APROS ohjelmiston termohydraulisten mallien kehittämiseen. Vuonna 1999 aloitetun kansallisen FINNUS-projektin osatavoite on kehittää turvallisuustutkimuksissa käytettyjä tietokoneohjelmia, kuten APROSia. APROS on kehittynyt vuosien varrella niin laskenta-algoritmien kuin fysikaalisten mallienkin osalta. APROSiin oli kehitetty myös uusi käyttöliittymä GRADES, joka toimii Windows NT-ympäristössä. Diplomityön tavoitteena oli tehdä uudella GRADES-käyttöliittymällä uusi ja entistä tarkempi simulaatiomalli PACTEL-koelaitteistosta. Uusi simulaatiomalli kelpoistettiin kahden vanhan PACTEL-kokeen avulla, LOF-10 ja SBL-22. Laskentatuloksista voidaan päätellä laskeeko APROS oikein ja voidaanko APROSilla tehtyjä turvallisuusanalyysejä pitää luotettavina. Valmis kelpoistettu simulaatiomalli tuli VTT Energian kokeellisen lämpö- ja virtaustekniikan laboratorion käyttöön. Simulaatiomallilla voidaan laskea ja simuloida sekä vanhoja että uusia PACTEL-kokeita ja käyttää mallia tulevien PACTEL-kokeiden suunnitteluun.