996 resultados para Endogenous effect
Resumo:
To investigate the influence of glutathione (GSH) on cellular effects of nitric oxide (NO) formation, human colon adenocarcinoma cells were transfected with a vector allowing controlled expression of inducible nitric oxide synthase (iNOS). Protein levels of oxidative stress-sensitive heme oxygenase-1 (HO-1) were analyzed in the presence or absence of GSH depletion using L-buthionine-[S,R]-sulfoximine and iNOS induction. While no effect was observed in the presence of iNOS activity alone, a synergistic effect on HO-1 expression was observed in the presence of iNOS expression and GSH depletion. This effect was prevented by addition of N-methyl-L-arginine. Therefore, targeting of endogenous NO may be modulated by intracellular GSH.
Resumo:
There is increasing evidence that angiotensin-(1-7) (Ang-(1-7)) is an endogenous biologically active component of the renin-angiotensin system (RAS). In the present study, we investigated the effects of Ang-(1-7) on reperfusion arrhythmias in isolated rat hearts. Isolated rat hearts were perfused with two different media, i.e., Krebs-Ringer (2.52 mM CaCl2) and low-Ca2+ Krebs-Ringer (1.12 mM CaCl2). In hearts perfused with Krebs-Ringer, Ang-(1-7) produced a concentration-dependent (27-210 nM) reduction in coronary flow (25% reduction at highest concentration), while only slight and variable changes in contraction force and heart rate were observed. Under the same conditions, angiotensin II (Ang II; 27 and 70 nM) produced a significant reduction in coronary flow (39% and 48%, respectively) associated with a significant increase in force. A decrease in heart rate was also observed. In low-Ca2+ Krebs-Ringer solution, perfusion with Ang-(1-7) or Ang II at 27 nM concentration produced similar changes in coronary flow, contraction force and heart rate. In isolated hearts perfused with normal Krebs-Ringer, Ang-(1-7) produced a significant enhancement of reperfusion arrhythmias revealed by an increase in the incidence and duration of ventricular tachycardia and ventricular fibrillation (more than 30-min duration). The facilitation of reperfusion arrhythmias by Ang-(1-7) was associated with an increase in the magnitude of the decreased force usually observed during the post-ischemic period. The effects of Ang-(1-7) were abolished in isolated rat hearts perfused with low-Ca2+ Krebs-Ringer. The effect of Ang II (27 nM) was similar but less pronounced than that of Ang-(1-7) at the same concentration. These results indicate that the heart is a site of action for Ang-(1-7) and suggest that this heptapeptide may be involved in the mediation of the cardiac effects of the RAS
Resumo:
Until recently, dietary sources of nucleotides were thought not to be essential for good nutrition. Certain states with higher metabolic demands may require larger amounts that cannot be provided by endogenous production. The objective of the present study was to determine the action of nucleotides on the recovery from lactose-induced diarrhea in weaned rats. Thirty-six weanling Fisher rats were divided into two groups. Group 1 received a standard diet and group 2 received a diet containing lactose in place of starch. On the 10th day, six animals per group were sacrificed for histopathological evaluation. The remaining animals were divided into two other subgroups, each with 6 animals, receiving a control diet, a control diet with nucleotides (0.05% adenosine monophosphate, 0.05% guanosine monophosphate, 0.05% cytidine monophosphate, 0.05% uridine monophosphate and 0.05% inosine monophosphate), a diet with lactose, and a diet with lactose and nucleotides. On the 32nd day of the experiment all animals were sacrificed. Animals with diarrhea weighed less than animals without diarrhea. The introduction of nucleotides did not lead to weight gain. Mean diet consumption was lower in the group that continued to ingest lactose, with the group receiving lactose plus nucleotides showing a lower mean consumption. Animals receiving lactose had inflammatory reaction and deposits of periodic acid-Schiff-positive material in intestinal, hepatic and splenic tissues. The introduction of nucleotides led to an improvement of the intestinal inflammatory reaction. In lactose-induced diarrhea, when the stimulus is maintained - lactose overload - the nucleotides have a limited action on the weight gain and on recovery of intestinal morphology, although they have a protective effect on hepatic injury and improve the inflammatory response.
Resumo:
There is extensive evidence that acute stress induces an analgesic response in rats. On the other hand, repeatedly stressed animals may present the opposite effect, i.e., hyperalgesia. Furthermore, exposure to novelty is known to induce antinociception. The effects of repeated restraint stress on nociception after exposure to novelty, as measured by the tail-flick latency (TFL), were studied in adult male rats. The animals were stressed by restraint 1 h daily, 5 days a week for 40 days. The control group was not submitted to restraint. Nociception was assessed with a tail-flick apparatus. After being familiarized with the TFL apparatus, each group was subdivided into two other groups, i.e., with or without novelty. Animals were subjected to the TFL measurement twice. For the animals exposed to novelty, the first TFL measurement was made immediately before, and the second 2 min after a 2-min exposure to a new environment. While the control group presented an increased TFL after exposure to a novel environment, chronically stressed animals did not show this effect. These results suggest that repeated restraint stress induces an alteration in the nociceptive response, perhaps as a result of an alteration in endogenous opioids in these animals.
Resumo:
A function of the endogenous analgesic system is to prevent recuperative behaviors generated by tissue damage, thus preventing the emission of species-specific defensive behaviors. Activation of intrinsic nociception is fundamental for the maintenance of the behavioral strategy adopted. Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. We studied the effect of TI behavior on nociception produced by the formalin and hot-plate tests in guinea pigs. The induction of TI produced a significant decrease in the number of flinches (18 ± 6 and 2 ± 1 in phases 1 and 2) and lickings (6 ± 2 and 1 ± 1 in phases 1 and 2) in the formalin test when compared with control (75 ± 13 and 22 ± 6 flinches in phases 1 and 2; 28 ± 7 and 17 ± 7 lickings in phases 1 and 2). In the hot-plate test our results also showed antinociceptive effects of TI, with an increase in the index of analgesia 30 and 45 min after the induction of TI (0.67 ± 0.1 and 0.53 ± 0.13, respectively) when compared with control (-0.10 ± 0.08 at 30 min and -0.09 ± 0.09 at 45 min). These effects were reversed by pretreatment with naloxone (1 mg/kg, ip), suggesting that the hypoalgesia observed after induction of TI behavior, as evaluated by the algesimetric formalin and hot-plate tests, is due to activation of endogenous analgesic mechanisms involving opioid synapses.
Resumo:
It was previously reported that systemic administration of dipyrone inhibited the tonic component of generalized tonic-clonic seizures in both the electroshock and the audiogenic seizure models. The aim of the present study was to investigate the mechanisms involved in the anticonvulsant action of dipyrone by assessing the role of nitric oxide and opioids in the electroshock (female 60- to 90-day-old Wistar rats, N = 5-11) and audiogenic seizure (female 60- to 90-day-old Wistar audiogenic rats, N = 5-11) models of epilepsy. Naloxone (5 mg/kg, sc) significantly reversed the anticonvulsant effect of dipyrone in rats submitted to the induction of audiogenic seizures (ANOVA/Bonferroni's test), suggesting the involvement of opioid peptides in this action. In the electroshock model no reversal of the anticonvulsant effect of dipyrone by naloxone (5 mg/kg, sc) was demonstrable. The acute (120 mg/kg, ip) and chronic (25 mg/kg, ip, twice a day/4 days) administration of L-NOARG did not reverse the anticonvulsant action of dipyrone in the audiogenic seizure model, suggesting that the nitric oxide pathway does not participate in such effect. Indomethacin (10, 20 and 30 mg/kg, ip) used for comparison had no anticonvulsant effect in the audiogenic seizure model. In conclusion, opioid peptides but not nitric oxide seem to be involved in the anticonvulsant action of dipyrone in audiogenic seizures.
Resumo:
(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.
Resumo:
Exercise is a low-cost intervention that promotes health and contributes to the maintenance of the quality of life. The present study was designed to investigate the influence of different resistance exercise protocols on the nociceptive threshold of rats. Female Wistar rats were used to perform exercises in a weight-lifting exercise model. The following groups were examined (N = 6 per group): untrained rats (control group); an acute protocol group consisting of rats submitted to 15 sets of 15 repetitions of resistance exercise (acute group); rats exercised with 3 sets of 10 repetitions, three times per week for 12 weeks (trained group), and a group consisting of trained rats that were further submitted to the acute protocol (trained-acute group). The nociceptive threshold was measured by the paw-withdrawal test, in which the withdrawal threshold (escape reaction) was measured by an apparatus applying force to the plantar surface of the animal paw. The opioid antagonist naloxone (2 mg/kg) was administered subcutaneously 10 min before the exercise protocols. The trained group demonstrated antinociception only up to day 45 of the 12-week training period. A significant increase (37%, P < 0.05) in the nociceptive threshold was produced immediately after exercise, decreasing to 15% after 15 min, when the acute exercise protocol was used. Naloxone reversed this effect. These data show that the acute resistance exercise protocol was effective in producing antinociception for 15 min. This antinociceptive effect is mediated by the activation of opioid receptors.
Resumo:
Diabetic retinopathy (DR) is a serious complication of diabetes mellitus that may result in blindness. We evaluated the effects of activation of endogenous angiotensin converting enzyme (ACE) 2 on the early stages of DR. Rats were administered an intravenous injection of streptozotocin to induce hyperglycemia. The ACE2 activator 1-[[2-(dimethylamino) ethyl] amino]-4-(hydroxymethyl)-7-[[(4-methylphenyl) sulfonyl] oxy]-9H-xanthone 9 (XNT) was administered by daily gavage. The death of retinal ganglion cells (RGC) was evaluated in histological sections, and retinal ACE2, caspase-3, and vascular endothelial growth factor (VEGF) expressions were analyzed by immunohistochemistry. XNT treatment increased ACE2 expression in retinas of hyperglycemic (HG) rats (control: 13.81±2.71 area%; HG: 14.29±4.30 area%; HG+XNT: 26.87±1.86 area%; P<0.05). Importantly, ACE2 activation significantly increased the RCG number in comparison with HG animals (control: 553.5±14.29; HG: 530.8±10.3 cells; HG+XNT: 575.3±16.5 cells; P<0.05). This effect was accompanied by a reduction in the expression of caspase-3 in RGC of the HG+XNT group when compared with untreated HG rats (control: 18.74±1.59; HG: 38.39±3.39 area%; HG+XNT: 27.83±2.80 area%; P<0.05). Treatment with XNT did not alter the VEGF expression in HG animals (P>0.05). Altogether, these findings indicate that activation of ACE2 reduced the death of retinal ganglion cells by apoptosis in HG rats.
Resumo:
The current study is an attempt to find a means of lowering oxalate concentration in individuals susceptible to recurrent calcium oxalate stone disease.The formation of renal stone composed of calcium oxalate is a complex process that remains poorly understood and treatment of idiopathic recurrent stone formers is quite difficult and this area has attracted lots of research workers. The main objective of this work are to study the effect of certain mono and dicarboxylic acids on calcium oxalate crystal growth in vitro, isolation and characterization of oxalate degrading bacteria, study the biochemical effect of sodium glycollate and dicarboxylic acids on oxalate metabolism in experimental stone forming rats and To investigate the effect of dicarboxylic acids on oxalate metabolism in experimental hyperoxaluric rats. Oxalic acid is one of the most highly oxidized organic compound widely distributed in the diets of man and animals, and ingestion of plants that contain high concentration of oxalate may lead to intoxication. Excessive ingestion of dietary oxalate may lead to hyperoxaluria and calcium oxalate stone disease.The formation of calcium oxalate stone in the urine is dependent on the saturation level of both calcium and oxalate. Thus the management of one or both of these ions in individuals susceptible to urolithiasis appears to be important. The control of endogenous oxalate synthesis from its precursors in hyperoxaluric situation is likely to yield beneficial results and can be a useful approach in the medical management of urinary stones. A variety of compounds have been investigated to curtain endogenous oxalate synthesis which is a crucial factor, most of these compounds have not proved to be effective in the in vivo situation and some of them are not free from the toxic effect. The non-operative management of stone disease has been practiced in ancient India in the three famous indigenous systems of medicine, Ayurveda, Unani and Siddha, and proved to be effective.However the efficiency of most of these substances is still questionable and demands further study. Man as well as other mammals cannot metabolize oxalic acid. Excessive ingestion of oxalic acid can arise from oxalate rich food and from its major metabolic precursors, glycollate, glyoxylate and ascorbic acid can lead to an acute oxalate toxicity. Increasedlevels of circulating oxalate, which can result in a variety of diseases including renal failure and oxalate lithiasis. The ability to enzymatically degrade oxalate to less noxious Isubstances, formate and CO2, could benefit a great number of individuals including those afflicted with hyperoxaluria and calcium oxalate stone disease.
Resumo:
The causality between international trade and industrialization is still ambiguous. We consider a model of international trade with the Home Market Effect - with differences in income and productivity between sectors and between countries - in order to identify additional channels for determining the effects of international trade on industrialization. Introducing non-homothetic preferences and differences in productivity aids in the interpretation of any apparent paradoxes within international trade, such as the commercial relations between more populated countries like China and India and large economies such as the U.S. Population size, demand composition and productivity levels constitute the three main channels for determining the effects of international trade. Interactions among these channels define the results obtained in terms of industrialization, while welfare levels are always higher in relation to autarky.
Resumo:
The aim was to determine the fate of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. Male broiler chicks (n = 24) were allocated at 1 day old to each of four treatment diets designated T1-T4. T1 and T2 contained the near isogenic nongenetically modified (GM) maize grain, whereas T3 and T4 contained GM maize grain [cry1a(b) gene]; T1 and T3 also contained the near isogenic non-GM soybean meal, whereas T2 and T4 contained GM soybean meal (cp4epsps gene). Four days prior to slaughter at 39-42 days old, 50% of the broilers on T2-T4 had the source(s) of GM ingredients replaced by their non-GM counterparts. Detection of specific DNA sequences in feed, tissue, and digesta samples was completed by polymerase chain reaction analysis. Seven primer pairs were used to amplify fragments (similar to 200 bp) from single copy genes (maize high mobility protein, soya lectin, and transgenes in the GM feeds) and multicopy genes (poultry mitochondrial cytochrome b, maize, and soya rubisco). There was no effect of treatment on the measured growth performance parameters. Except for a single detection of lectin (nontransgenic single copy gene; unsubstantiated) in the extracted DNA from one bursa tissue sample, there was no positive detection of any endogenous or transgenic single copy genes in either blood or tissue DNA samples. However, the multicopy rubisco gene was detected in a proportion of samples from all tissue types (23% of total across all tissues studied) and in low numbers in blood. Feed-derived DNA was found to survive complete degradation up to the large intestine. Transgenic DNA was detected in gizzard digesta but not in intestinal digesta 96 h after the last feeding of treatment diets containing a source of GM maize and/or soybean meal.
Resumo:
Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.
Resumo:
The increase in fractional rate of protein synthesis (K-s) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs Also exhibit an increase in K-s with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0.778 mumol leucine, 0.640 mumol isoleucine and 0.693 mumol valine/min.kg); (3) 18.7 mumol glucose/min.kg (to induce endogenous insulin secretion): (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine, (Phe) as follows: (1) L-[1-C-13]Phe; (2) L-phenyl-[ring H-2(5)]-alanine; (3) L-[N-15]Phe; (4) L-[ring 2,6-H-3]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine K-s in in. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, K-s was increased by an average of 40% at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on K-s compared with control sheep. K-s was approximately 60% greater for vastus muscle than for m. longissimus dorsi (P<0.01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in K-s in muscle of growing ruminant animals.
Resumo:
Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.