987 resultados para Emission control
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Transportation Department, Office of Noise Abatement, Washington, D.C.
Resumo:
Transportation Systems Center, Cambridge, Mass.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Automotive catalysts are the most effective short-term answer to air pollution from automobiles. Since strict control of exhaust emissions is, or will be,covered by legislation in most developed countries in the world, catalytic devices will be increasingly fitted to cars. There is consequently an urgent need for the development of catalysts that will not compete for scarce precious metal resources. A number of problems have already been identified in connection with base metal catalysts but quantitative investigations are lacking. The base metal reduction catalysts developed by Imperial Chemical Industries Limited, catalysts and Chemical Group, in collaboration with the Air Pollution Control Laboratory, B L Cars Limited for automotive emission control, are susceptible to de-activation by three major mechanisms. These are: physical loss of the wash-coat (a high surface area coating which supports the active species), aggregation of the active species and poisoning by fuel and engine oil additives. This thesis is especially concerned with the first two of these and attempts to indicate the relative magnitude .of their effect on the activity of. the catalysts. Aggregation of the active species or sintering, as it is loosely called, was studied by using impregnated granules to overcome effects due to the loss of the wash-coat. Samples were aged in a synthetic exhaust gas, free from poisons, and metal crystallite sizes were measured by scanning-electron microscopy. The increase in particle size was correlated with the loss in catalytic activity. In order to maintain a link with the real conditions of service a number of monolithic catalysts were tested in an engine-dynamometer and several previously tested endurance catalysts were examined. A mechanism is proposed for the break-up and subsequent 10s.5 of the wash-coat and suggestions for improved resistance to loss of the' coating and active species are proposed.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
The role of computer modeling has grown recently to integrate itself as an inseparable tool to experimental studies for the optimization of automotive engines and the development of future fuels. Traditionally, computer models rely on simplified global reaction steps to simulate the combustion and pollutant formation inside the internal combustion engine. With the current interest in advanced combustion modes and injection strategies, this approach depends on arbitrary adjustment of model parameters that could reduce credibility of the predictions. The purpose of this study is to enhance the combustion model of KIVA, a computational fluid dynamics code, by coupling its fluid mechanics solution with detailed kinetic reactions solved by the chemistry solver, CHEMKIN. As a result, an engine-friendly reaction mechanism for n-heptane was selected to simulate diesel oxidation. Each cell in the computational domain is considered as a perfectly-stirred reactor which undergoes adiabatic constant- volume combustion. The model was applied to an ideally-prepared homogeneous- charge compression-ignition combustion (HCCI) and direct injection (DI) diesel combustion. Ignition and combustion results show that the code successfully simulates the premixed HCCI scenario when compared to traditional combustion models. Direct injection cases, on the other hand, do not offer a reliable prediction mainly due to the lack of turbulent-mixing model, inherent in the perfectly-stirred reactor formulation. In addition, the model is sensitive to intake conditions and experimental uncertainties which require implementation of enhanced predictive tools. It is recommended that future improvements consider turbulent-mixing effects as well as optimization techniques to accurately simulate actual in-cylinder process with reduced computational cost. Furthermore, the model requires the extension of existing fuel oxidation mechanisms to include pollutant formation kinetics for emission control studies.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
The overall aim of our research was to characterize airborne particles from selected nanotechnology processes and to utilize the data to develop and test quantitative particle concentration-based criteria that can be used to trigger an assessment of particle emission controls. We investigated particle number concentration (PNC), particle mass (PM) concentration, count median diameter (CMD), alveolar deposited surface area, elemental composition, and morphology from sampling of aerosols arising from six nanotechnology processes. These included fibrous and non-fibrous particles, including carbon nanotubes (CNTs). We adopted standard occupational hygiene principles in relation to controlling peak emission and exposures, as outlined by both Safe Work Australia, (1) and the American Conference of Governmental Industrial Hygienists (ACGIH®). (2) The results from the study were used to analyses peak and 30-minute averaged particle number and mass concentration values measured during the operation of the nanotechnology processes. Analysis of peak (highest value recorded) and 30-minute averaged particle number and mass concentration values revealed: Peak PNC20–1000 nm emitted from the nanotechnology processes were up to three orders of magnitude greater than the local background particle concentration (LBPC). Peak PNC300–3000 nm was up to an order of magnitude greater, and PM2.5 concentrations up to four orders of magnitude greater. For three of these nanotechnology processes, the 30-minute average particle number and mass concentrations were also significantly different from the LBPC (p-value < 0.001). We propose emission or exposure controls may need to be implemented or modified, or further assessment of the controls be undertaken, if concentrations exceed three times the LBPC, which is also used as the local particle reference value, for more than a total of 30 minutes during a workday, and/or if a single short-term measurement exceeds five times the local particle reference value. The use of these quantitative criteria, which we are terming the universal excursion guidance criteria, will account for the typical variation in LBPC and inaccuracy of instruments, while precautionary enough to highlight peaks in particle concentration likely to be associated with particle emission from the nanotechnology process. Recommendations on when to utilize local excursion guidance criteria are also provided.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. (C) 2015 AIP Publishing LLC.