927 resultados para Emg Signals
Resumo:
Background: It is known that when barefoot, gait biomechanics of diabetic neuropathic patients differ from nondiabetic individuals. However, it is still unknown whether these biomechanical changes are also present during shod gait which is clinically advised for these patients. This study investigated the effect of the participants own shoes on gait biomechanics in diabetic neuropathic individuals compared to barefoot gait patterns and healthy controls. Methods: Ground reaction forces and lower limb EMG activities were analyzed in 21 non-diabetic adults (50.9 +/- 7.3 yr, 24.3 +/- 2.6 kg/m(2)) and 24 diabetic neuropathic participants (55.2 +/- 7.9 yr, 27.0 +/- 4.4 kg/m(2)). EMG patterns of vastus lateralis, lateral gastrocnemius and tibialis anterior, along with the vertical and antero-posterior ground reaction forces were studied during shod and barefoot gait. Results: Regardless of the disease, walking with shoes promoted an increase in the first peak vertical force and the peak horizontal propulsive force. Diabetic individuals had a delay in the lateral gastrocnemius EMG activity with no delay in the vastus lateralis. They also demonstrated a higher peak horizontal braking force walking with shoes compared to barefoot. Diabetic participants also had a smaller second peak vertical force in shod gait and a delay in the vastus lateralis EMG activity in barefoot gait compared to controls. Conclusions: The change in plantar sensory information that occurs when wearing shoes revealed a different motor strategy in diabetic individuals. Walking with shoes did not attenuate vertical forces in either group. Though changes in motor strategy were apparent, the biomechanical did not support the argument that the use of shoes contributes to altered motor responses during gait.
Resumo:
Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.
Resumo:
Objectives: The purpose of this study was to investigate the levels of electromyographic (EMG) activation and maximal molar bite force before and after a 3-month acupuncture therapy in individuals with temporomandibular disorder (Helkimo Index) from a pool of subjects attending the Special Care Course of the Ribeirao Preto Dental School, Sao Paulo University, Brazil. Design: All 17 patients, aged between 37 and 50 years (44.2 +/- 4.84 years), with an average weight of 71 +/- 9.45 kg and height of 1.64 +/- 0.07 m, were clinically examined with regard to pain and dysfunctions of the masticatory system. The temporomandibular acupuncture points of needling were IG4, E6, E7, B2, VB14, VB20, ID18, ID19, F3, E36, VB34, E44, R3, and HN3. EMG measures were acquired before and after the treatment using a MyoSystem-BR1 electromyographer. The data collected at rest, protrusion, left and right laterality, and clenching were normalized by maximum voluntary contraction. Maximal bite force in right and left molar regions were registered using a dynamometer with a capacity of up to 1000 N, adapted for oral conditions. The highest value out of three recordings was considered to be the individual's maximal bite force. The results were statistically analyzed using the paired t test (SPSS version 15.0) during the comparison before and after treatment. Results: We found decreased EMG activity at rest, protrusion, left and right laterality, and clenching; as well as increased values of maximal bite force after acupuncture treatment. Conclusions: Acupuncture promoted alterations in the EMG activity of masticatory muscles, increased maximal molar bite force, and led to remission of the subjects' painful symptomatology.
Resumo:
The mechanism of electroweak symmetry breaking ( EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp -> l(+)l(1-)E(T), l +/- jjE(T), l(1 +/-)l(+)l(-)E(T), l(+/-)jjE(T), and l(+)l(-) jj (with l, l' = e or mu and j = jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.
Resumo:
We investigate the collider signals associated with scalar quirks (squirks) in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Because of the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited squirkonium loses energy to radiation before annihilating back into standard model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time scales. The most promising annihilation channel for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.
Resumo:
We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb(-1). We also compare the displaced vertex reaches of the LHC and Tevatron.
Resumo:
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This study determined which peripheral variables would better predict the rating of perceived exertion (RPE) and time to exhaustion (TE) during exercise at different intensities. Ten men performed exercises at first lactate threshold (LT1), second lactate threshold (LT2), 50% of the distance from LT1 to LT2 (TT(50%)), and 25% of the distance from LT2 to maximal power output (TW(25%)). Lactate, catecholamines, potassium, pH, glucose, (V) over dotO(2), VE, HR, respiratory rate (RR) and RPE were measured and plotted against the exercise duration for the slope calculation. Glucose, dopamine, and noradrenaline predicted RPE in TT(50%) (88%), LT2 (64%), and TW(25%) (77%), but no variable predicted RPE in LT1. RPE (55%), RPE+HR (86%), and RPE+RR (92% and 55%) predicted TE in LT1, TT(50%), LT2, and TW(25%), respectively. At intensities from TT(50%) to TW(25%), variables associated with brain activity seem to explain most of the RPE slope, and RPE (+HR and+RR) seems to predict the TE.
Resumo:
Research Foundation of the State of Sao Paulo (FAPESP)
Resumo:
State of Sao Paulo Research Foundation (FAPESP)
Resumo:
In this work, an algorithm to compute the envelope of non-destructive testing (NDT) signals is proposed. This method allows increasing the speed and reducing the memory in extensive data processing. Also, this procedure presents advantage of preserving the data information for physical modeling applications of time-dependent measurements. The algorithm is conceived to be applied for analyze data from non-destructive testing. The comparison between different envelope methods and the proposed method, applied to Magnetic Bark Signal (MBN), is studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.
Resumo:
This paper is a study of various electric signals, which have been employed throughout the history of communication engineering in its two main landmarks: the telegraph and the telephone. The signals are presented in their time and frequency domain representations. The historical order has been followed in the presentation: wired systems, spark gap wireless, continuous wave (CW) and amplitude modulation (AM), detection by rectification, and frequency modulation (FM). The analysis of these signals is meant to lead into a better understanding of the evolution of communication technology. The material presented in this work could be used to illustrate ""Signals and Systems"" and ""Communication Systems"" courses by taking advantage of its technical as well as historical contents.
Resumo:
Chaotic signals have been considered potentially attractive in many signal processing applications ranging from wideband communication systems to cryptography and watermarking. Besides, some devices as nonlinear adaptive filters and phase-locked loops can present chaotic behavior. In this paper, we derive analytical expressions for the autocorrelation sequence, power spectral density and essential bandwidth of chaotic signals generated by the skew tent map. From these results, we suggest possible applications in communication systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the characteristics of the Power Spectral Density (PSD) of chaotic signals generated by skew tent maps. The influence of the Lyapunov exponent on the autocorrelation sequence and on the PSD is evaluated via computational simulations. We conclude that the essential bandwidth of these signals is strongly related to this exponent and they can be low-pass or high-pass depending on the family`s parameter. This way, the PSD of a chaotic signal is a function of the generating map although this is not a one-to-one relationship. (C) 2009 Elsevier Ltd. All rights reserved.