872 resultados para Elements, High Trhoughput Data, elettrofisiologia, elaborazione dati, analisi Real Time
Resumo:
Pseudomonas aeruginosa genotyping relies mainly upon DNA fingerprinting methods, which can be subjective, expensive and time-consuming. The detection of at least three different clonal P. aeruginosa strains in patients attending two cystic fibrosis (CF) centres in a single Australian city prompted the design of a non-gel-based PCR method to enable clinical microbiology laboratories to readily identify these clonal strains. We designed a detection method utilizing heat-denatured P. aeruginosa isolates and a ten-single-nucleotide polymorphism (SNP) profile. Strain differences were detected by SYBR Green-based real-time PCR and high-resolution melting curve analysis (HRM10SNP assay). Overall, 106 P. aeruginosa sputum isolates collected from 74 patients with CF, as well as five reference strains, were analysed with the HRM10SNP assay, and the results were compared with those obtained by pulsed-field gel electrophoresis (PFGE). The HRM10SNP assay accurately identified all 45 isolates as members of one of the three major clonal strains characterized by PFGE in two Brisbane CF centres (Australian epidemic strain-1, Australian epidemic strain-2 and P42) from 61 other P. aeruginosa strains from Australian CF patients and two representative overseas epidemic strain isolates. The HRM10SNP method is simple, is relatively inexpensive and can be completed in <3 h. In our setting, it could be made easily available for clinical microbiology laboratories to screen for local P. aeruginosa strains and to guide infection control policies. Further studies are needed to determine whether the HRM10SNP assay can also be modified to detect additional clonal strains that are prevalent in other CF centres.
Resumo:
We present a mathematically rigorous Quality-of-Service (QoS) metric which relates the achievable quality of service metric (QoS) for a real-time analytics service to the server energy cost of offering the service. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management and flood forecasting. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.
Resumo:
Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.
Resumo:
This work presents a methodological proposal for acquisition of biometric data through telemetry basing its development on a research-action and a case study. Nowadays, the qualified professionals of physical evaluation have to use specific devices to obtain biometric signals and data. These devices in the most of the time are high cost and difficult to use and handling. Therefore, the methodological proposal was elaborate in order to develop, conceptually, a bio telemetric device which could acquire the desirable biometric signals: oxymetry, biometrics, corporal temperature and pedometry which are essential for the area of physical evaluation. It was researched the existent biometrics sensors, the possible ways for the remote transmission of signals and the computer systems available so that the acquisition of data could be possible. This methodological proposal of remote acquisition of biometrical signals is structured in four modules: Acquisitor of biometrics data; Converser and transmitter of biometric signals; Receiver and Processor of biometrics signals and Generator of Interpretative Graphs. The modules aim the obtention of interpretative graphics of human biometric signals. In order to validate this proposal a functional prototype was developed and it is presented in the development of this work.
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.
Resumo:
High-frequency data collected continuously over a multiyear time frame are required for investigating the various agents that drive ecological and hydrodynamic processes in estuaries. Here, we present water quality and current in-situ observations from a fixed monitoring station operating from 2008 to 2014 in the lower Guadiana Estuary, southern Portugal (37°11.30' N, 7°24.67' W). The data were recorded by a multi-parametric probe providing hourly records (temperature, salinity, chlorophyll, dissolved oxygen, turbidity, and pH) at a water depth of ~1 m, and by a bottom-mounted acoustic Doppler current profiler measuring the pressure, near-bottom temperature, and flow velocity through the water column every 15 min. The time-series data, in particular the probe ones, present substantial gaps arising from equipment failure and maintenance, which are ineluctable with this type of observations in harsh environments. However, prolonged (months-long) periods of multi-parametric observations during contrasted external forcing conditions are available. The raw data are reported together with flags indicating the quality status of each record. River discharge data from two hydrographic stations located near the estuary head are also provided to support data analysis and interpretation.
Resumo:
En los últimos tiempos, el tráfico generado por los usuarios de redes móviles ha crecido de manera muy notable, y se prevé que dicho crecimiento se mantenga de manera continuada a lo largo de los próximos años. El tráfico gestionado por redes móviles se ha multiplicado por cinco entre los años 2010 y 2013, y las predicciones señalan un aumento de diez veces entre 2013 y 2019. De este tráfico que deben gestionar las redes móviles, una gran parte se genera en el interior de edificios. En la actualidad, éste oscila entre el 70% y el 80% del tráfico móvil total, y este porcentaje se prevé que aumente hasta cerca del 95% en los próximos años. En esta situación, con el tráfico móvil aumentando de manera exponencial, especialmente en interiores, el despliegue de soluciones específicas para estos entornos se antoja imprescindible para evitar situaciones de saturación constante de las redes móviles. Desde el punto de vista de los operadores móviles, estas soluciones permitirán limitar los problemas de cobertura, mejorar la eficiencia del uso de recursos radio y reducir el coste de las infraestructuras. Asimismo, desde el punto de vista de los usuarios, estos despliegues específicos en interiores permitirán suministrar de manera continua altas tasas de transferencia y satisfacer los altos requisitos de calidad de servicio que demandan los servicios en tiempo real. La complejidad de las actuaciones a realizar para llevar a cabo el despliegue de soluciones específicas en interiores varía considerablemente según el tipo de entorno al que están destinadas. Por un lado, las soluciones en escenarios de tipo residencial se caracterizan por despliegues masivos de transmisores realizados por los propios usuarios. De esta manera, no hay posibilidad de realizar ningún tipo de planificación previa que permita la optimización del rendimiento y solo se puede recurrir, para la mejora de éste, a métodos de autoconfiguración y autooptimización. Por otro lado, las soluciones en entornos empresariales se caracterizan por la necesidad de realizar una labor de diseño y planificación previa, cuya dificultad estará asociada a las dimensiones del escenario de despliegue y al número de transmisores necesarias. De esta labor de diseño y de la configuración de los elementos involucrados en la solución desplegada dependerá el funcionamiento adecuado de la red, el rendimiento conseguido y la calidad del servicio que se podrá suministrar a través de ésta. En esta Tesis Doctoral se abordan dos de los problemas principales en el ámbito del despliegue de soluciones específicas de interiores. El primero de ellos es la dificultad para estimar la capacidad y el rendimiento que puede garantizarse mediante soluciones autodesplegadas, y el segundo es la complejidad de diseñar y configurar despliegues de soluciones específicas de interiores en entornos empresariales que requieran un número de transmisores considerable. En el ámbito de los autodespliegues en escenarios residenciales, las principales contribuciones originales de esta Tesis Doctoral se centran en el diseño, desarrollo e implementación de procedimientos que permitan de manera sencilla y precisa la estimación de la capacidad y el rendimiento en autodespliegues. Por otro lado, en el ámbito de los despliegues en escenarios empresariales, las aportaciones originales de esta Tesis consisten en el desarrollo de nuevas técnicas que permitan el diseño automático de soluciones específicas de interiores en estos entornos. Los resultados obtenidos han permitido la creación de herramientas específicas para el análisis del rendimiento de autodespliegues en escenarios residenciales reales y para el diseño y configuración de despliegues en escenarios empresariales. Estas herramientas permiten sistematizar la aplicación práctica de las contribuciones de la presente Tesis Doctoral. ABSTRACT In recent times, the traffic generated by users of mobile networks has grown very significantly, and this increase is expected to continue steadily over the next few years. Traffic carried by mobile networks has increased fivefold between 2010 and 2013, and forecasts indicate a tenfold increase between 2013 and 2019. Furthermore, a great part of this traffic is generated inside buildings. Currently, between 70% and 80% of mobile traffic occurs inside buildings, and this percentage is expected to increase to about 95% in the coming years. In this situation, with mobile traffic growing exponentially, especially indoors, the deployment of specific solutions for these environments can be essential to avoid a constant saturation of mobile networks. On the one hand, from the point of view of mobile operators, these solutions will help to reduce the problems of coverage, improve the efficiency of radio resource usage and reduce the cost of infrastructures. Also, from the point of view of users, these specific indoor deployments can both guarantee high data transfer rates and meet the high quality of service requirements associated with real-time services. The complexity of the actions required to carry out the deployment of specific solutions indoors varies considerably depending on the type of scenario they are conceived to. On the one hand, residential scenarios are characterized by massive deployments of base stations made by the user, so there is no possibility of any prior planning. In this case only self-configuration, selfoptimization and self-healing methods can be considered for performance optimization. On the other hand, specific in-building solutions in enterprise environments requires a previous design and planning phase, whose difficulty is closely associated with the size of the deployment scenario and the number of base stations required. The design and configuration of the elements included in the solution will determine its performance and the quality of service that can be guaranteed. The objective of the present Thesis is to address two of the main issues related to specific indoor solutions, such as the difficulty of assessing the capacity and the performance which can be guaranteed by means of self-deployments and the complexity of the design and configuration of deployments in enterprise environments requiring a large number of base stations. The main contribution of this thesis consists of the development of techniques and simple tools for design and performance analysis of indoor wireless networks deployments. The main results include the development of procedures for assessing the capacity and performance of self-deployments in residential scenarios, the performance analysis of real residential self-deployments using the proposed procedures and the development of techniques for the automatic design of wireless networks in enterprise environments. The results obtained have allowed the creation of specific software tools for both the performance analysis of self-deployments and the design and deployment of in-building solutions in enterprise scenarios. These software tools are conceived to systematize the practical application of the contributions of this Thesis.
Resumo:
The engineering of solar power applications, such as photovoltaic energy (PV) or thermal solar energy requires the knowledge of the solar resource available for the solar energy system. This solar resource is generally obtained from datasets, and is either measured by ground-stations, through the use of pyranometers, or by satellites. The solar irradiation data are generally not free, and their cost can be high, in particular if high temporal resolution is required, such as hourly data. In this work, we present an alternative method to provide free hourly global solar tilted irradiation data for the whole European territory through a web platform. The method that we have developed generates solar irradiation data from a combination of clear-sky simulations and weather conditions data. The results are publicly available for free through Soweda, a Web interface. To our knowledge, this is the first time that hourly solar irradiation data are made available online, in real-time, and for free, to the public. The accuracy of these data is not suitable for applications that require high data accuracy, but can be very useful for other applications that only require a rough estimate of solar irradiation.
Resumo:
Traffic flow time series data are usually high dimensional and very complex. Also they are sometimes imprecise and distorted due to data collection sensor malfunction. Additionally, events like congestion caused by traffic accidents add more uncertainty to real-time traffic conditions, making traffic flow forecasting a complicated task. This article presents a new data preprocessing method targeting multidimensional time series with a very high number of dimensions and shows its application to real traffic flow time series from the California Department of Transportation (PEMS web site). The proposed method consists of three main steps. First, based on a language for defining events in multidimensional time series, mTESL, we identify a number of types of events in time series that corresponding to either incorrect data or data with interference. Second, each event type is restored utilizing an original method that combines real observations, local forecasted values and historical data. Third, an exponential smoothing procedure is applied globally to eliminate noise interference and other random errors so as to provide good quality source data for future work.