963 resultados para Electronics.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boronimplanted shallow pn-junctions in silicon technology. Meanwhile the interest in flash lamp annealing (FLA) in the millisecond range spread out into other fields related to silicon technology and beyond. This paper reports on recent experiments regarding shallow junction engineering in germanium, annealing of ITO layers on glass and plastic foil to form an conductive layer as well as investigations which we did during the last years in the field of wide band gap semiconductor materials (SiC, ZnO). A more common feature evolving from our work was related to the modeling of wafer stress during millisecond thermal processing with flash lamps. Finally recent achievements in the field of silicon-based light emission basing on Metal-Oxide-Semiconductor Light Emitting Devices will be reported. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate inkjet printing as a viable method for large-area fabrication of graphene devices. We produce a graphene-based ink by liquid phase exfoliation of graphite in N-methylpyrrolidone. We use it to print thin-film transistors, with mobilities up to ∼95 cm(2) V(-1) s(-1), as well as transparent and conductive patterns, with ∼80% transmittance and ∼30 kΩ/□ sheet resistance. This paves the way to all-printed, flexible, and transparent graphene devices on arbitrary substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-film electronics in its myriad forms has underpinned much of the technological innovation in the fields of displays, sensors, and energy conversion over the past four decades. This technology also forms the basis of flexible electronics. Here we review the current status of flexible electronics and attempt to predict the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. We then examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarises the recent advances in the field of silicon nanowire electronics from bottom-up assembled materials. The aim is to draw a comparison between bottom-up and top-down approaches, examining respective achievements and evaluating advantages and disadvantages of each methodology. Existing techniques for synthesis and doping are discussed to provide the framework in which practical electronic applications can be developed. Next, key device categories are reviewed, emphasising current challenges and proposed solutions. Finally, field perspectives are outlined. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods based on the Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) equations are applied to the thermal prediction of flows representative of those found in and around electronics systems and components. Low Reynolds number flows through a heated ribbed channel, around a heated cube and within a complex electronics system case are investigated using linear and nonlinear LES models, hybrid RANS-LES and RANS-Numerical-LES (RANS-NLES) methods. Flow and heat transfer predictions using these techniques are in good agreement with each other and experimental data for a range of grid resolutions. Using second order central differences, the RANS-NLES method performs well for all simulations. © 2011 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid methods based on the Reynolds Averaged Navier Stokes (RANS) equations and the Large Eddy Simulation (LES) formulation are investigated to try and improve the accuracy of heat transfer and surface temperature predictions for electronics systems and components. Two relatively low Reynolds number flows are studied using hybrid RANS-LES, RANS-Implicit-LES (RANS-ILES) and non-linear LES models. Predictions using these methods are in good agreement with each other, even using different grid resolutions. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of computational aeroacoustics (CCA) was made for application in electronics cooler noise. Computational aeroacoustics encompasses all numerical methods where the purposes is to predict the noise emissions from a simulated flow. Numerical simulation of the flow inside and around heat sinks and fans can lead to a prediction of the emitted noise while they are still in the design phase. Direct CCA is theoretically the best way to predict flow-based acoustic phenomena numerically. It is typically used only for low-frequency sound prediction. The boundary element method offers low computational cost and does not use a computational grid, but instead use vortex-surface calculations to determine tonal noise. Axial fans are commonly used to increase the airflow and thus the heat transfer over the heat sinks within the computer cases. Very detailed source simulations in the fan and heat sink region coupled with the use of analogy methods could result in excellent simulation results with a reasonable computational effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past years, organic materials have been extensively investigated as an electronic material for organic field effect transistors (OFETs). In this paper, we briefly summarize the current status of organic field effect transistors including materials design, device physics, molecular electronics and the application of carbon nanotubes in molecular electronics. Future prospects and investigations required to improve the OFET performance are also involved.