963 resultados para Electric insulators and insulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This theoretical paper attempts to define some of the key components and challenges required to create embodied conversational agents that can be genuinely interesting conversational partners. Wittgenstein's argument concerning talking lions emphasizes the importance of having a shared common ground as a basis for conversational interactions. Virtual bats suggests that-for some people at least-it is important that there be a feeling of authenticity concerning a subjectively experiencing entity that can convey what it is like to be that entity. Electric sheep reminds us of the importance of empathy in human conversational interaction and that we should provide a full communicative repertoire of both verbal and non-verbal components if we are to create genuinely engaging interactions. Also we may be making the task more difficult rather than easy if we leave out non-verbal aspects of communication. Finally, analogical peacocks highlights the importance of between minds alignment and establishes a longer term goal of being interesting, creative, and humorous if an embodied conversational agent is to be truly an engaging conversational partner. Some potential directions and solutions to addressing these issues are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the research is to demonstrate new physiological characteristics receptors in the presence of mosquito larvae. 100 larvae of different species were collected and studied for a week in periods of 8-24 hrs. Larvae stages I, II, III and IV have photo-thermo receptors of light and heat housed in the body is divided into head, thorax and abdomen, perceive hot or cold environments, and have fibers in chest or hairs lining your body or abdomen, and a pair of antennae on the head. Stages II and III are more developed than the initial stages. They are attracted by the dark green at the bottom, a pair of eyes that perceive light and color. Have receptors proteins (RP55) that capture motion at a speed the slightest movement of waves in the water. Its nose is not well developed but have chemoreceptors. They adapt to changes in pH in alkaline media, are sensitive to chemical, thermal and mechanical changes nociceptors have electroreceptors or galvanoreceptores sensitive to electrical stimuli, have mechanoreceptors that are sensitive to touch, pain, pressure, gravity, sound. They have a GPS position that seems the guides. It is precisely in the fibers, mushrooms or bristles are recipients along with the micro villi in head, thorax and abdomen.
RESUMEN El objetivo principal de la investigación es demostrar nuevas características fisiológicas como la presencia de receptores en las larvas de mosquitos. Se recolectaron 100 larvas de diferentes especies y se estudiaron por una semana en periodos de 8 a 24 hrs. Las larvas de los estadios I,II,III y IV tienen foto-termo receptores de luz y calor alojados en el cuerpo que se divide en cabeza, tórax y abdomen, perciben ambientes fríos o calientes, así como tienen fibras en tórax o pelos que recubren su cuerpo, y un par de antenas en la cabeza. Los estadios II y III son más desarrollados que las etapas iniciales. Tienen receptores proteicos RP55. Les atrae el color verde oscuro en el fondo, un par de ojos que perciben la luz y color con fotoreceptores. Tienen receptores RP55 de movimiento que captan a una velocidad el más mínimo movimiento de ondas en el agua. Su olfato no está muy desarrollado pero tienen quimioreceptores. Se adaptan a cambios de pH en medios alcalinos, tienen nociceptores sensibles a cambios químicos, térmicos y mecánicos, tienen galvanoreceptores o electroreceptores sensibles a estímulos eléctricos, tienen mecanoreceptores que son sensibles al tacto, dolor, presión gravedad, sonido. Tienen un GPS de posición que pareciera las orienta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this simulation thesis is to present a tool for studying and eliminating various numerical problems observed while analyzing the behavior of the MIND cable during fast voltage polarity reversal. The tool is built on the MATLAB environment, where several simulations were run to achieve oscillation-free results. This thesis will add to earlier research on HVDC cables subjected to polarity reversals. Initially, the code does numerical simulations to analyze the electric field and charge density behavior of a MIND cable for certain scenarios such as before, during, and after polarity reversal. However, the primary goal is to reduce numerical oscillations from the charge density profile. The generated code is notable for its usage of the Arithmetic Mean Approach and the Non-Uniform Field Approach for filtering and minimizing oscillations even under time and temperature variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of the analysis of dynamic behavior of flashover phenomenon on the high voltage-polluted insulators are presented. These results were taken from a mathematical and an experimental model that introduce the variable thickness influence of the layer pollution deposited on the high-voltage insulator surface. Analysis of the flashover was done by way of introducing a variation in the thickness of the channel of Obenaus' model, simulating a layer pollution of variable thickness. The objective was to obtain a better reproduction of the real layer pollution deposited on the insulator that works in the polluted regions. Two types of thickness variations were used: a sudden variation, using a step; and a soft variation, using a ramp; that were put along the way of the discharge. Comparison between the mathematical and experimental models showed that introduction of a ramp makes Obenaus' model more efficient in analyzing behavior of flashover phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is intended to evaluate the density and the mechanical, acoustic and thermal properties of compression moulded plates composed of granulate from electrical cables wastes. Those cable wastes are the insulation part from the electric cables, and are composed of PVC, PE, EMP and PEX rubber. After these materiais lose their initial properties and cease to be useful as insulation material, due to safety requirements, it is possible to reuse them into new applications like industrial or playground floorings, as sound insulation material to be applied in walls or floors, or to dampen vibrations from equipments. Recovering electric cable waste has been a major concern to the European Commission due to its leveis of toxicity when incineration and land fill ing is the solution to dispose this material. Such as the European Commission's study for DG Xl[1] suggested that recycling may be the most favourable future waste management option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the neural basis of electric taste we performed electrical neuroimaging analyses of event-related potentials (ERPs) recorded while participants received electrical pulses to the tongue. Pulses were presented at individual taste threshold to excite gustatory fibers selectively without concomitant excitation of trigeminal fibers and at high intensity evoking a prickling and, thus, activating trigeminal fibers. Sour, salty and metallic tastes were reported at both intensities while clear prickling was reported at high intensity only. ERPs exhibited augmented amplitudes and shorter latencies for high intensity. First activations of gustatory areas (bilateral anterior insula, medial orbitofrontal cortex) were observed at 70-80ms. Common somatosensory regions were more strongly, but not exclusively, activated at high intensity. Our data provide a comprehensive view on the dynamics of cortical processing of the gustatory and trigeminal portions of electric taste and suggest that gustatory and trigeminal afferents project to overlapping cortical areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The average Iowa family spends more than half of its annual household energy bill on heating and cooling. That’s a significant number, but you can dramatically reduce these costs—up to 20 percent, according to ENERGY STAR®—by making some simple energy-saving weatherization and insulation improvements to your home. In addition—with a little attention to proper ventilation—you can protect your home from moisture damage year-round, reduce problems caused by ice dams on the roof during the winter and significantly cut summer cooling costs. As a bonus, these projects can extend the life of your home and may increase the resale value of your property. If you like to fix things around the house, you can handle many of the projects suggested in this book and make the most of your energy-improvement budget. However, don’t hesitate to call a professional for help if you’d rather not do the work yourself; the dollars gained through energy savings in upcoming years will be worth the expense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the electrical industry the 50 Hz electric and magnetic fields are often higher than in the average working environment. The electric and magnetic fields can be studied by measuring or by calculatingthe fields in the environment. For example, the electric field under a 400 kV power line is 1 to 10 kV/m, and the magnetic flux density is 1 to 15 µT. Electricand magnetic fields of a power line induce a weak electric field and electric currents in the exposed body. The average current density in a human being standing under a 400 kV line is 1 to 2 mA/m2. The aim of this study is to find out thepossible effects of short term exposure to electric and magnetic fields of electricity power transmission on workers' health, in particular the cardiovascular effects. The study consists of two parts; Experiment I: influence on extrasystoles, and Experiment II: influence on heart rate. In Experiment I two groups, 26 voluntary men (Group 1) and 27 transmission-line workers (Group 2), were measured. Their electrocardiogram (ECG) was recorded with an ambulatory recorder both in and outside the field. In Group 1 the fields were 1.7 to 4.9 kV/m and 1.1 to 7.1 pT; in Group 2 they were 0.1 to 10.2 kV/m and 1.0 to 15.4 pT. In the ECG analysis the only significant observation was a decrease in the heart rate after field exposure (Group 1). The drop cannot be explained with the first measuring method. Therefore Experiment II was carried out. In Experiment II two groups were used; Group 1 (26 male volunteers) were measured in real field exposure, Group 2 (15 male volunteers) in "sham" fields. The subjects of Group 1 spent 1 h outside the field, then 1 h in the field under a 400 kV transmission line, and then again 1 h outside the field. Under the 400 kV linethe field strength varied from 3.5 to 4.3 kV/m, and from 1.4 to 6.6 pT. Group 2spent the entire test period (3 h) in a 33 kV outdoor testing station in a "sham" field. ECG, blood pressure, and electroencephalogram (EEG) were measured by ambulatory methods. Before and after the field exposure, the subjects performed some cardiovascular autonomic function tests. The analysis of the results (Experiments I and II) showed that extrasystoles or arrythmias were as frequent in the field (below 4 kV/m and 4 pT) as outside it. In Experiment II there was no decrease detected in the heart rate, and the systolic and diastolic blood pressure stayed nearly the same. No health effects were found in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods: an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels. Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical works on anisotropic rings.