991 resultados para Electric industry
Resumo:
Cover-title.
Resumo:
Nos. 71B, 81A, and 84D constitute a general index to all numbers.
Resumo:
"References": p. 43.
Resumo:
Mode of access: Internet.
Resumo:
A. Metalworking.--B. Mining.--C. Apparel.--D. Electric light and power and warehousing and storage.--E. Structural clay products.--F. Services.--G. Retail trade.--H. Footwear.--I. Bakeries.--J. Tobacco.--K. Paper and allied products.--L. Textiles.--M. Chemicals.--N. Furniture.--O. Candy and chocolates.--P. Leather tanning, currying and finishing.--Q. Meat products.--R. Gas utilities.--S. Wholesale drugs.--T. Glassware.--U. Mechanical rubber goods.--V. Copper alloying, rolling and drawing.--W. Lumber.
Resumo:
"B-278620"--P. [1].
Resumo:
Title Varies: V.1, Home Study; V.2-3, Home Study Magazine; V.4,No.10-V.8,No.4, Science and Industry
Resumo:
No more published.
Resumo:
This paper investigates vertical economies between generation and distribution of electric power, and horizontal economies between different types of power generation in the U.S. electric utility industry. Our quadratic cost function model includes three generation output measures (hydro, nuclear and fossil fuels), which allows us to analyze the effect that generation mix has on vertical economies. Our results provide (sample mean) estimates of vertical economies of 8.1% and horizontal economies of 5.4%. An extensive sensitivity analysis is used to show how the scope measures vary across alternative model specifications and firm types. © 2012 Blackwell Publishing Ltd and the Editorial Board of The Journal of Industrial Economics.
Resumo:
Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.
Resumo:
Teknova have 2D steady-state models of the calciner but wish, in the long term, to have a 3D model that can also cover unsteady conditions, and can can model the loss of axisymmetry that someties occurs. Teknova also wish to understand the processes happening around the tip of the upper electrode, in particular the formation of a lip on it and the the shape of the empty region below it. The Study Group proposed potential models for the degree of graphitization, and for the granular flow. Also the Study Group considered the upper electrode in detail. The proposed model for the lip formation is by sublimation of carbon from the hottest parts of the furnace with redeposition in the region around the electrode, which may stick particles onto the electrode surface. In this model the region below the electrode would be a void, roughly a vertex-down conical cavity. The electric field near the lower rim of the electrode will then have a singularity and so the most intense heating of the charge will be around the rim. We conjecture that the reason why the lower electrode lasts so much longer than the upper is that it is not adjacent to a cavity like this, and therefore does not have a singularity in the field.