932 resultados para Elective ventilation
Resumo:
The three effectiveness measures based on the ability of a flow to flush buoyancy from a ventilated space proposed by Coffey and Hunt [Ventilation effectiveness measures based on heat removal-part 1. Definitions. Building and Environment, in press, doi:10.1016/j.buildenv.2006.03.016.] are applied to assess and compare two fundamental natural ventilation flows. We focus on the limiting cases of passive displacement and passive mixing ventilation flows during transient conditions. These transient flows occur when, for example, heat is purged from a building at night. Whilst it is widely recognised that mixing flows are less efficient at purging heat than displacement flows, our results indicate that, when a particular zone of a room is considered, displacement ventilation can result in lower effectiveness than mixing ventilation. When a room is considered as a whole, displacement ventilation yields higher effectiveness than mixing ventilation and we quantify these differences in terms of the geometry of the space and opening area. The proposed theoretical predictions are compared with effectiveness deduced from measurements made during laboratory experiments and show good agreement. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The effectiveness of ventilation flows is considered from the perspective of buoyancy (or heat) removal from a space. This perspective is distinct from the standard in which the effectiveness is based on the concentrations of a neutrally buoyant contaminant/passive tracer. Three new measures of effectiveness are proposed based on the ability of a flow to flush buoyancy from a ventilated space. These measures provide estimates of instantaneous and time-averaged effectiveness for the entire space, and local effectiveness at any height of interest. From a generalisation of the latter, a vertical profile of effectiveness is defined. These measures enable quantitative comparisons to be made between different flows and they are applicable when there is a difference in density (as is typical due to temperature differences) between the interior environment and the replacement air. Applications, therefore, include natural ventilation, hybrid ventilation and a range of forced ventilation flows. Finally, we demonstrate how the ventilation effectiveness of a room may be assessed from simple traces of temperature versus time. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
We compare natural ventilation flows established by a range of heat source distributions at floor level. Both evenly distributed and highly localised line and point source distributions are considered. We demonstrate that modelling the ventilation flow driven by a uniformly distributed heat source is equivalent to the flow driven by a large number of localised sources. A model is developed for the transient flow development in a room with a uniform heat distribution and is compared with existing models for localised buoyancy inputs. For large vent areas the flow driven by localised heat sources reaches a steady state more rapidly than the uniformly distributed case. For small vent areas there is little difference in the transient development times. Our transient model is then extended to consider the time taken to flush a neutrally buoyant pollutant from a naturally ventilated room. Again comparisons are drawn between uniform and localised (point and line) heat source geometries. It is demonstrated that for large vent areas a uniform heat distribution provides the fastest flushing. However, for smaller vent areas, localised heat sources produce the fastest flushing. These results are used to suggest a definition for the term 'natural ventilation efficiency', and a model is developed to estimate this efficiency as a function of the room and heat source geometries. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
New measures for estimating the efficiency of transient ventilation flows are proposed. These measures are developed by considering how effectively a ventilation system removes buoyancy from a space. This approach is distinct from standard efficiency measures which are, in general, based on the removal of a neutrally-buoyant passive tracer. Our new measures, based on (active) buoyancy removal, allow both the instantaneous and time-averaged efficiency of the entire space, or of any region within it, to be determined. In addition, expressions for determining vertical profiles of efficiency are proposed. These new measures enable the effectiveness of different flows to be compared directly and are applicable providing density (temperature) differences exist between the interior environment and the replacement air. Thus, they may be used to contrast the effectiveness of a broad range of building ventilation flows including natural, hybrid and forced ventilation.
Resumo:
The transfers of air driven by a revolving door connecting two rooms of initially different temperatures are investigated. The results of small-scale laboratory modelling show that a critical revolution rate exists for which transfers are maximal for a given combination of door geometry, revolution rate and temperature contrast. This critical revolution rate divides two possible transfer regimes for revolving doors. Potential implications of our findings to revolving door operation, to heat losses across the doorway and to ventilation driven by the door are discussed.
Resumo:
We examine the time taken to flush pollutants from a naturally ventilated room. A simple theoretical model is developed to predict the time taken for neutrally-buoyant pollutants to be removed from a room by a flow driven by localised heat inputs; both line and point heat sources are considered. We show that the rate of flushing is a function of the room volume, vent areas ( A) and the distribution, number (n) and strength (B) of the heat sources. We also show that the entire problem can be reduced to a single parameter ( μ) that is a measure of the vent areas, and a dimensionless time ( τ) that is a function of B, V and μ. Small-scale salt-bath experiments were conducted to measure the flushing rates in order to validate our modelling assumptions and predictions. The predicted flushing times show good agreement with the experiments over a wide range of μ. We apply our model to a typical open plan office and lecture theatre and discuss some of the implications of our results. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
An atrium is a central feature of many modern naturally ventilated building designs. The atrium fills with warm air from the adjoining storeys: this air may be further warmed by direct solar heating in the atrium, and the deep warm layer enhances the flow. In this paper we focus on the degree of flow enhancement achieved by an atrium which is itself 'ventilated' directly, by a low-level connection to the exterior. A theoretical model is developed to predict the steady stack-driven displacement flow and thermal stratification in the building, due to heat gains in the storey and solar gains in the atrium, and compared with the results of laboratory experiments. Direct ventilation of the atrium is detrimental to the ventilation of the storey and the best design is identified as a compromise that provides adequate ventilation of both spaces. We identify extremes of design for which an atrium provides no significant enhancement of the flow, and show that an atrium only enhances the flow in the storey if its upper opening is of an intermediate size, and its lower opening is sufficiently small. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.
Resumo:
A simple mathematical model of stack ventilation flows in multi-compartment buildings is developed with a view to providing an intuitive understanding of the physical processes governing the movement of air and heat through naturally ventilated buildings. Rules of thumb for preliminary design can be ascertained from a qualitative examination of the governing equations of flow, which elucidate the relationships between 'core' variables - flow rates, air temperatures, heat inputs and building geometry. The model is applied to an example three-storey office building with an inlet plenum and atrium. An examination of the governing equations of flow is used to predict the behaviour of steady flows and to provide a number of preliminary design suggestions. It is shown that control of ventilation flows must be shared between all ventilation openings within the building in order to minimise the disparity in flow rates between storeys, and ensure adequate fresh air supply rates for all occupants. © 2013 Elsevier Ltd.
Resumo:
Using a simplified mathematical model, a preliminary design strategy for steady stack ventilation in multi-storey atrium buildings is developed. By non-dimensionalising the governing equations of flow, two key dimensionless parameters are identified - a ventilation performance indicator, λ, and atrium enhancement parameter, E - which quantify the performance of the ventilation system and the effectiveness of the atrium in assisting flows. Analytical expressions are determined to inform the vent sizes needed to provide the desired balance between indoor air temperature, ventilation flow rate and heat inputs for any distribution of occupants within the building, and also to ensure unidirectional flow. Dimensionless charts for determining the required combination of design variables are presented with a view to informing first-order design guidance for naturally ventilated buildings. © 2013 Elsevier Ltd.
Resumo:
We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.