894 resultados para El Nino Current - Environmental aspects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"October 1985".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 19-21.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt. 2 has subtitle: Hearings before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, first session, on the status of the Department of Energy's effects to address issues concerning the defense materials production reactors ... October 27 and 29, 1987.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The El Nino-Southern Oscillation (ENSO) phenomenon significantly impacts rainfall and ensuing crop yields in many parts of the world. In Australia, El Nino events are often associated with severe drought conditions. However, El Nino events differ spatially and temporally in their manifestations and impacts, reducing the relevance of ENSO-based seasonal forecasts. In this analysis, three putative types of El Nino are identified among the 24 occurrences since the beginning of the twentieth century. The three types are based on coherent spatial patterns (footprints) found in the El Nino impact on Australian wheat yield. This bioindicator reveals aligned spatial patterns in rainfall anomalies, indicating linkage to atmospheric drivers. Analysis of the associated ocean-atmosphere dynamics identifies three types of El Nino differing in the timing of onset and location of major ocean temperature and atmospheric pressure anomalies. Potential causal mechanisms associated with these differences in anomaly patterns need to be investigated further using the increasing capabilities of general circulation models. Any improved predictability would be extremely valuable in forecasting effects of individual El Nino events on agricultural systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For predators foraging within spatially and temporally heterogeneous marine ecosystems, environmental fluctuations can alter prey availability. Using the proportion of time spent diving and foraging trip duration as proxies of foraging effort, a multi-year dataset was used to assess the response of 58 female Australian fur seals Arctocephalus pusillus doriferus to interannual environmental fluctuations. Multiple environmental indices (remotely sensed ocean colour data and numerical weather predictions) were assessed for their influence on inter-annual variations in the proportion of time spent diving and trip duration. Model averaging revealed strong evidence for relationships between 4 indices and the proportion of time spent diving. There was a positive relationship with effort and 2 yr-lagged spring sea-surface temperature, current winter zonal wind and southern oscillation index, while a negative relationship was found with 2 yr-lagged spring zonal wind. Additionally, a positive relationship was found between foraging trip duration and 1 yr-lagged spring surface chlorophyll a. These results suggest that environmental fluctuations may influence prey availability by affecting the survival and recruitment of prey at the larval and post-larval phases while also affecting current distribution of adult prey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental aspects are increasingly being integrated in Negev Bedouin studies by both, NGO activists and scholars. We will present these recent works and discuss new concepts and methodologies of environmental studies with potential relevance in the field of Negev Bedouin studies. We will then identify research areas where environmental and development approaches converge or diverge with mainstream social sciences on this specific field of research. While most of the Bedouin population in southern Israel lives in urban centers in the Northern Negev, a large part of Bedouin people live in unrecognized clusters of houses in remote areas. Extensive livestock rearing is an important source of livelihood at least for non-urbanized Bedouin, the latter forming the lowest economic strata of the Israeli spectrum of incomes. Numerous stressors affect this Bedouin community enduring uncertain livelihood and access to land. The erratic precipitations from year to year and long-term changes in precipitation trends are a source of great uncertainty. With a significant price increase for feeding supplements to compensate for dry years, livestock rearing has become a harsher source of livelihood. Land scarcity for grazing adds to the difficulty in ensuring enough income for living. Studies in the last 15 years have described several livelihood strategies based on a livestock rearing semi-nomadic economy in the Negev. A number of other analyses have shown how Bedouin herders and governmental agencies have found agreements at the advantage of both, the agencies and the herders. New concepts such as transformability, resilience and adaptation strategies are important tools to analyze the capacity of vulnerable communities to cope with an ever increasing livelihood uncertainty. Such research concepts can assist in better understanding how Bedouin herders in the Negev may adapt to climate and political risks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Journal of Environmental Management, nº 82 p. 410–432

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical cyclones genesis, movement and intensification are highly dependent on its environment both oceanic and atmospheric. This thesis has made a detailed study on the environmental factors related to tropical cyclones of North Indian Ocean basin. This ocean basin has produced only 6% of the global tropical cyclones annually but it has caused maximum loss of human life associated with the strong winds, heavy rain and particularly storm surges that accompany severe cyclones as they strike the heavily populated coastal areas. Atmospheric factors studied in the thesis are the moisture content of the atmosphere, instability of the atmosphere that produces thunderstorms which are the main source of energy for the tropical cyclone, vertical wind shear to which cyclones are highly sensitive and the Sub-Tropical westerly Jetsteram and its Asian high speed center. The oceanic parameters studied are sea surface temperature and heat storage in the top layer of the ocean. A major portion of the thesis has dealt with the three temporal variabilities of tropical cyclone frequency namely intra-seasonal (mainly the influence of Madden Julian Oscillation), inter- annual (the relation with El Nino Southern Oscillation) and decadal variabilities. Regarding decadal variability, a prominent four decade oscillation in the frequency of both tropical cyclones and monsoon depressions unique to the Indian Ocean basin has been brought out. The thesis consists of 9 chapters.