973 resultados para Einstein Manifolds
Resumo:
We have studied the interaction between the low-lying transverse collective oscillations and the thermal excitations of an elongated Bose-Einstein condensate by means of perturbation theory. We consider a cylindrical trapped condensate and calculate the transverse elementary excitations at zero temperature by solving the linearized Gross-Pitaevskii equations in two dimensions (2D). We use them to calculate the matrix elements between the thermal excited states and the quasi-2D collective modes. The Landau damping of transverse collective modes is studied as a function of temperature. At low temperatures, the corresponding damping rate is in agreement with the experimental data for the decay of the transverse quadrupole mode, but it is too small to explain the observed slow decay of the transverse breathing mode. The reason for this discrepancy is discussed.
Resumo:
In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states.
Resumo:
We discuss the relation between spacetime diffeomorphisms and gauge transformations in theories of the YangMills type coupled with Einsteins general relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these generally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure YangMills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead, the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the spacetime metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer. 2000 American Institute of Physics.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
We discuss a multisoliton solution to Einsteins equations in vacuum. The solution is interpreted as many gravitational solitons propagating and colliding on a homogeneous cosmological background. Following a previous letter, we characterize the solitons by their localizability and by their peculiar properties under collisions. Furthermore, we define an associated frame-dependent velocity field which illustrates the solitonic character of these gravitational solitons in the classical sense.
Resumo:
We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical context. They are Petrov type-I solutions which describe solitonlike waves interacting with a line source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the axis which is typical of massive line sources, whereas others just have the conical singularity revealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thornes C-energy. The C-energy is found to be radiated along the null directions.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
Some generalized soliton solutions of the cosmological EinsteinRosen type defined in the space-time region t2=z2 in terms of canonical coordinates are considered. Vacuum solutions are studied and interpreted as cosmological models. Fluid solutions are also considered and are seen to represent inhomogeneous cosmological models that become homogeneous at t?8. A subset of them evolve toward isotropic FriedmannRobertsonWalker metrics.
Resumo:
El mito Einstein se ha formado básicamente en torno a sus teorías relativistas que, entre otras implicaciones, conducían a una original concepción del espacio-tiempo e incluso a una nueva forma de descripción del mundo físico. No obstante, sus contribuciones a la teoría cuántica -aunque no tan divulgadas- son de tal envergadura que por sí solas constituyen un aporte más que suficiente para que su autor ocupara un destacadísimo lugar entre los grandes creadores científicos de todos los tiempos. En el presente trabajo nos proponemos justificar tan categórica afirmación, empleando los medios que la historiografía moderna ofrece e incluyendo también resultados de algunas investigaciones propias.
Resumo:
We study numerically the disappearance of normally hyperbolic invariant tori in quasiperiodic systems and identify a scenario for their breakdown. In this scenario, the breakdown happens because two invariant directions of the transversal dynamics come close to each other, losing their regularity. On the other hand, the Lyapunov multipliers associated with the invariant directions remain more or less constant. We identify notable quantitative regularities in this scenario, namely that the minimum angle between the two invariant directions and the Lyapunov multipliers have power law dependence with the parameters. The exponents of the power laws seem to be universal.
Resumo:
When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.