970 resultados para Efflux Pump


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The drug efflux pump P-glycoprotein (P-gp) (ABCB1) confers multidrug resistance, a major cause of failure in the chemotherapy of tumours, exacerbated by a shortage of potent and selective inhibitors. A high throughput assay using purified P-gp to screen and characterise potential inhibitors would greatly accelerate their development. However, long-term stability of purified reconstituted ABCB1 can only be reliably achieved with storage at -80 °C. For example, at 20 °C, the activity of ABCB1 was abrogated with a half-life of <1 day. The aim of this investigation was to stabilise purified, reconstituted ABCB1 to enable storage at higher temperatures and thereby enable design of a high throughput assay system. The ABCB1 purification procedure was optimised to allow successful freeze drying by substitution of glycerol with the disaccharides trehalose or maltose. Addition of disaccharides resulted in ATPase activity being retained immediately following lyophilisation with no significant difference between the two disaccharides. However, during storage trehalose preserved ATPase activity for several months regardless of the temperature (e.g. 60% retention at 150 days), whereas ATPase activity in maltose purified P-gp was affected by both storage time and temperature. The data provide an effective mechanism for the production of resilient purified, reconstituted ABCB1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Currently tacrolimus is the mainstay of immunosuppression for most children undergoing liver transplantation (LT). • The clinical use of this agent, however, is complicated by its various adverse effects (mainly nephrotoxicity), its narrow therapeutic-index and considerable pharmacokinetic variability. • The low and variable oral bioavailability of tacrolimus is thought to result from the action of the multidrug efflux-pump P-glycoprotein, encoded by the ABCB1 gene. WHAT THIS STUDY ADDS • A significant association between ABCB1 genetic polymorphisms and tacrolimus-associated nephrotoxicity in paediatric patients following LT is reported for the first time. Genotyping such polymorphisms may have the potential to individualize better initial tacrolimus therapy and enhance drug safety. • The long-term effect of ABCB1 polymorphisms on tacrolimus trough concentrations were investigated up to 5 years post-transplantation. A significant effect of intestinal P-glycoprotein genotypes on tacrolimus pharmacokinetics was found at 3 and 4 years post-transplantation suggesting that the effect is maintained long term. AIMS - The aim of this study was to investigate the influence of genetic polymorphisms in ABCB1 on the incidence of nephrotoxicity and tacrolimus dosage-requirements in paediatric patients following liver transplantation. METHODS - Fifty-one paediatric liver transplant recipients receiving tacrolimus were genotyped for ABCB1 C1236>T, G2677>T and C3435>T polymorphisms. Dose-adjusted tacrolimus trough concentrations and estimated glomerular filtration rates (EGFR) indicative of renal toxicity were determined and correlated with the corresponding genotypes. RESULTS - The present study revealed a higher incidence of the ABCB1 variant-alleles examined among patients with renal dysfunction (≥30% reduction in EGFR) at 6 months post-transplantation (1236T allele: 63.3% vs 37.5% in controls, P= 0.019; 2677T allele: 63.3% vs. 35.9%, p = 0.012; 3435T allele: 60% vs. 39.1%, P= 0.057). Carriers of the G2677->T variant allele also had a significant reduction (%) in EGFR at 12 months post-transplant (mean difference = 22.6%; P= 0.031). Haplotype analysis showed a significant association between T-T-T haplotypes and an increased incidence of nephrotoxicity at 6 months post-transplantation (haplotype-frequency = 52.9% in nephrotoxic patients vs 29.4% in controls; P= 0.029). Furthermore, G2677->T and C3435->T polymorphisms and T-T-T haplotypes were significantly correlated with higher tacrolimus dose-adjusted pre-dose concentrations at various time points examined long after drug initiation. CONCLUSIONS - These findings suggest that ABCB1 polymorphisms in the native intestine significantly influence tacrolimus dosage-requirement in the stable phase after transplantation. In addition, ABCB1 polymorphisms in paediatric liver transplant recipients may predispose them to nephrotoxicity over the first year post-transplantation. Genotyping future transplant recipients for ABCB1 polymorphisms, therefore, could have the potential to individualize better tacrolimus immunosuppressive therapy and enhance drug safety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arsenic is a ubiquitous environmental toxic substance. As a consequence of continual exposure to arsenic, nearly every organism, from Escherichia coli to humans have evolved arsenic detoxification pathways. One of the pathways is extrusion of arsenic from inside the cells, thereby conferring resistance. The R773 arsRDABC operon in E. coli encodes an ArsAB efflux pump that confers resistance to arsenite. ArsA is the catalytic subunit of the pump, while ArsB forms the oxyanion conducting pathway. ArsD is an arsenite metallochaperone that binds arsenite and transfers it to ArsA. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. The interaction between ArsA ATPase and ArsD metallochaperone was examined. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. Mutations in ArsA that propagate changes in hydrogen bonding and salt bridges to the ArsA-ArsD interface also affect their interactions. The second objective was to examine the mechanism of arsenite resistance through methylation and subsequent volatilization. Microbial ArsM (As(III) S-adenosylmethyltransferase) catalyzes the formation of trimethylarsine as the volatile end product. The net result is loss of arsenic from cells. The gene for CrArsM from the eukaryotic green alga Chlamydomonas reinhardtii was chemically synthesized and expressed in E. coli. The purified protein catalyzed the methylation of arsenite into methyl-, dimethyl- and trimethyl products. Synthetic purified CrArsM was crystallized in an unliganded form. Biochemical and biophysical studies conducted on CrArsM sheds new light on the pathways of biomethylation. While in microbes ArsM detoxifies arsenic, the human homolog, hAS3MT, converts inorganic arsenic into more toxic and carcinogenic forms. An understanding of the enzymatic mechanism of ArsM will be critical in deciphering its parallel roles in arsenic detoxification and carcinogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soft tissue sarcomas (STS) comprise a heterogenenous group of greater than 50 malignancies of putative mesenchymal cell origin and as such they may arise in diverse tissue types in various anatomical locations throughout the whole body. Collectively they account for approximately 1% of all human malignancies yet have a spectrum of aggressive behaviours amongst their subtypes. They thus pose a particular challenge to manage and remain an under investigated group of cancers with no generally applicable new therapies in the past 40 years and an overall 5-year survival rate that remains stagnant at around 50%. From September 2000 to July 2006 I undertook a full time post-doctoral level research fellowship at the MD Anderson Cancer Center, Houston, Texas, USA in the department of Surgical Oncology to investigate the biology of soft tissue sarcoma and test novel anti- sarcoma adenovirus-based therapy in the preclinical nude rat model of isolated limb perfusion against human sarcoma xenografts. This work, in collaboration with colleagues as indicated herein, led to a number of publications in the scientific literature furthering our understanding of the malignant phenotype of sarcoma and reported preclinical studies with wild-type p53, in a replication deficient adenovirus vector, and oncolytic adenoviruses administered by isolated limb perfusion. Additional collaborative and pioneering preclinical studies reported the molecular imaging of sarcoma response to systemically delivered therapeutic phage RGD-4c AAVP. Doxorubicin chemotherapy is the single most active broadly applicable anti-sarcoma chemotherapeutic yet only has an approximate 30% overall response rate with additional breakthrough tumour progression and recurrence after initial chemo-responsiveness further problematic features in STS management. Doxorubicin is a substrate for the multi- drug resistance (mdr) gene product p-glycoprotein drug efflux pump and exerts its main mode of action by induction of DNA double-strand breaks during the S-phase of the cell cycle. Two papers in my thesis characterise different aspects of chemoresistance in sarcoma. The first shows that wild-type p53 suppresses Protein Kinase Calpha (PKCα) phosphorylation (and activation) of p-glycoprotein by transcriptional repression of PKCα through a Sp-1 transcription factor binding site in its -244/-234 promoter region. The second paper demonstrates that Rad51 (a central mediator of homologous recombination repair of double strand breaks) has elevated levels in sarcoma and particularly in the S- G2 phase of the cell cycle. Suppression of Rad51 with small interfering RNA in sarcoma cell culture led to doxorubicin chemosensitisation. Reintroduction of wild-type p53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression via transcriptional repression of the Rad51 promoter through increased AP-2 binding. In light of poor response rates to chemotherapy, escape from local control portends a poor prognosis for patients with sarcoma. Two papers in my thesis characterise aspects of sarcoma angiogenesis, invasion and metastasis. Human sarcoma samples were found to have high levels of matrix metalloproteinase-9 (MMP-9) with expression levels that correlated with p53 mutational status. MMP-9 is known to degrade extracellular collagen, contribute to the control of the angiogenic switch necessary in primary tumour progression and facilitate invasion and metastasis. Reconstitution of wild-type p53 function led to decreased levels of MMP-9 protein and mRNA as well as zymography-assessed MMP-9 proteolytic activity and decreased tumour cell invasiveness. Reintroduction of wild-type p53 into human sarcoma xenografts in-vivo decreased tumour growth and MMP-9 protein expression. Wild-type p53 was found to suppress mmp-9 transcription via decreased binding of NF-κB to its -607/-595 mmp-9 promoter element. Studies on the role of the VEGF165 in sarcoma found that sarcoma cells stably transfected with VEGF165 formed more aggressive xenografted tumours with increased vascularity, growth rate, metastasis, and resistance to chemotherapy. Use of the anti-VEGFR2 antibody DC101 enhanced doxorubicin sensitivity at sub-conventional dosing, inhibited tumour growth, decreased development of metastases, and reduced tumour micro-vessel density while increasing the vessel maturation index. These effects were explained primarily through effects on endothelial cells (e.c.s), rather than the tumour cells per se, where DC101 induced e.c. sensitivity to doxorubicin and suppressed e.c. production of MMPs. The p53 tumour suppressor pathway is the most frequently mutated pathway in sarcoma. Recapitulation of wild-type p53 function in sarcoma exerts a number of anti-cancer outcomes such as growth arrest, resensitisation to chemotherapy, suppression of invasion, and attenuation of angiogenesis. Using a modified nude rat-human sarcoma xenograft model for isolated limb perfusion (ILP) delivery of wild-type p53 in a replication deficient adenovirus vector I showed that functionally competent wild-type p53 could be delivered to and detected in human leiomyosarcoma xenografts confirming preclinical feasibility - although not efficacious due to low transgene expression. Viral fibre modification to express the RGD tripeptide motif led to greater viral uptake by sarcoma cells in vitro (transductional targeting) and changing the transgene promoter to a response element active in cells with active telomerase expression restricted the transgene expression to the tumour intracellular environment (transcriptional targeting). Delivery of the fibre-modified, selectively replication proficient oncolytic adenovirus Ad.hTC.GFP/ E1a.RGD by ILP demonstrated a more robust, and tumour-restricted, transgene expression with evidence of anti-sarcoma effect confirmed microscopically. Collaborative studies using the fibre modified phage RGD-4C AAVP confirmed that systemic delivery specifically, efficiently, and repeatedly targets human sarcoma xenografts, binds to αv integrins in tumours, and demonstrates a durable, though heterogeneous, transgene expression of 1-4 weeks. Incorporation of the Herpes Simplex Virus thymidine kinase (HSVtk) transgene into RGD-4C AAVP permitted CT-PET spatial and temporal molecular imaging in vivo of transgene expression and allowed quantification of tumour metabolic activity both before and after interval administration of a systemic cytotoxic with predictable and measurable response to treatment before becoming apparent clinically. These papers further the medical and scientific community’s understanding of the biology of soft tissue sarcoma and report preclinical studies with novel and promising anti- sarcoma therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAO∆ampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant progress has been achieved in elucidating the role of the plasma membrane Ca2+-ATPase in cellular Ca2+ homeostasis and physiology since the enzyme was first purified and physiology since the enzyme was first purified and cloned a number of years ago. The simple notion that the PM Ca2+-ATPase controls resting levels of [Ca2+](CYT) has been challenged by the complexity arising from the finding of four major isoforms and splice variants of the Ca2+ pump, and the finding that these are differentially localized in various organs and subcellular regions. Furthermore, the isoforms exhibit differential sensitivities to Ca2+, calmodulin, ATP, and kinase-mediated phosphorylation. The latter pathways of regulation can give rise to activation or inhibition of the Ca2+ pump activity, depending on the kinase and the particular Ca2+ pump isoform. Significant progress is being made in elucidating subtle and more profound roles of the PM Ca2+-ATPase in the control of cellular function. Further understanding of these roles awaits new studies in both transfected cells and intact organelles, a process that will be greatly aided by the development of new and selective Ca2+ pump inhibitors. (C) 1999 Elsevier Science Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed previously that Ca2+ pump-mediated Ca2+ efflux is elevated in cultured aortic smooth muscle cells from spontaneously hypertensive rats compared to those from Wistar-Kyoto rat controls. The objective of this work was to determine if these strains differ in mRNA levels for the PMCA1 isoform of the plasma membrane Ca2+-ATPase and the SERCA2 isoform of the sarcoplasmic reticulum Ca2+-ATPase. mRNA levels were compared in cultured aortic smooth muscle cells from 10-week-old male rats. PMCA1 and SERCA2 mRNA levels were elevated in SHR compared to WKY. Angiotensin II increased the level of PMCA1 and SERCA2 mRNA in both strains. These studies provide further evidence for alterered Ca2+ homeostasis in hypertension at the level of Ca2+ transporting ATPases in the spontaneously hypertensive rat model. These data are also consistent with the hypothesis that the expression of these two Ca2+ pumps may be linked. (C) 1997 Academic Press

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms express multidrug resistance pumps (MDRs) that can confound antibiotic discovery. We propose the use of mutants deficient in MDRs to overcome this problem. Sensitivity to quinolones and to amphipathic cations (norfloxacin, benzalkonium chloride, cetrimide, pentamidine, etc.) was increased 5- to 30-fold in a Staphylococcus aureus mutant with a disrupted chromosomal copy of the NorA MDR. NorA was required both for increased sensitivity to drugs in the presence of an MDR inhibitor and for increased rate of cation efflux. This requirement suggests that NorA is the major MDR protecting S. aureus from the antimicrobials studied. A 15- to 60-fold increase in sensitivity to antimicrobials also was observed in wild-type cells at an alkaline pH that favors accumulation of cations and weak bases. This effect was synergistic with a norA mutation, resulting in an increase up to 1,000-fold in sensitivity to antimicrobials. The usefulness of applying MDR mutants for natural product screening was demonstrated further by increased sensitivity of the norA− strain to plant alkaloid antimicrobials, which might be natural MDR substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidrug resistance pumps (MDRs) protect microbial cells from both synthetic and natural antimicrobials. Amphipathic cations are preferred substrates of MDRs. Berberine alkaloids, which are cationic antimicrobials produced by a variety of plants, are readily extruded by MDRs. Several Berberis medicinal plants producing berberine were found also to synthesize an inhibitor of the NorA MDR pump of a human pathogen Staphylococcus aureus. The inhibitor was identified as 5′-methoxyhydnocarpin (5′-MHC), previously reported as a minor component of chaulmoogra oil, a traditional therapy for leprosy. 5′-MHC is an amphipathic weak acid and is distinctly different from the cationic substrates of NorA. 5′-MHC had no antimicrobial activity alone but strongly potentiated the action of berberine and other NorA substrates against S. aureus. MDR-dependent efflux of ethidium bromide and berberine from S. aureus cells was completely inhibited by 5′-MHC. The level of accumulation of berberine in the cells was increased strongly in the presence of 5′-MHC, indicating that this plant compound effectively disabled the bacterial resistance mechanism against the berberine antimicrobial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced Cl− efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl− efflux via two mechanisms. The first is a direct effect of pHc on Cl− efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl− efflux. Cl− efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl− efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl− efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.