767 resultados para Education in mathematics
Resumo:
This study is a secondary data analysis of the Trends in Mathematics and Science Study 2003 (TIMSS) to determine if there is a gender bias, unbalanced number of items suited to the cognitive skill of one gender, and to compare performance by location. Results of the Grade 8, math portion of the test were examined. Items were coded as verbal, spatial, verbal /spatial or neither and as conventional or unconventional. A Kruskal- Wallis was completed for each category, comparing performance of students from Ontario, Quebec, and Singapore. A Factor Analysis was completed to determine if there were item categories with similar characteristics. Gender differences favouring males were found in the verbal conventional category for Canadian students and in the spatial conventional category for students in Quebec. The greatest differences were by location, as students in Singapore outperformed students from Canada in all areas except for the spatial unconventional category. Finally, whether an item is conventional or unconventional is more important than whether the item is verbal or spatial. Results show the importance of fair assessment for the genders in both the classroom and on standardized tests.
Resumo:
This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.
Resumo:
This study sought to explore the current state of Grades 4 to 8 science education in Ontario from the perspective of Junior/Intermediate (J/I) teachers. The study’s methodology was a sequential 2-phased mixed methods explanatory design denoted as QUAN (qual) qual. Data were collected from an online survey and follow-up interviews. J/I teachers (N = 219) from 48 school boards in Ontario completed a survey that collected both quantitative and qualitative data. Interviewees were selected from the survey participant population (n = 6) to represent a range of teaching strategies, attitudes toward teaching science, and years of experience. Survey and interview questions inquired about teacher attitudes toward teaching science, academic and professional experiences, teaching strategies, support resources, and instructional time allotments. Quantitative data analyses involved the descriptive statistics and chi-square tests. Qualitative data was coded inductively and deductively. Academic background in science was found to significantly influence teachers’ reported level of capability to teach science. The undergraduate degrees held by J/I science teachers were found to significantly influence their reported levels of capability to teach science. Participants identified a lack of time allocated for science instruction and inadequate equipment and facilities as major limitations on science instruction. Science in schools was reported to be of a “second-tiered” value to language and mathematics. Implications of this study include improving undergraduate and preservice experiences of elementary teachers by supporting their science content knowledge and pedagogical content knowledge.
Resumo:
Recurso que ofrece a los estudiantes de matemáticas toda la ayuda, el apoyo y la práctica necesaria para el aprendizaje y la revisión de esta asignatura. El contenido está planificado para dar cobertura a temas de matemáticas básicas. Los ejercicios y las pruebas de revisión ayudan al alumno a consolidar su conocimiento y lograr el mejor resultado.
Resumo:
Folleto con las soluciones a todos los ejercicios y pruebas de revisión del recurso con el título 'First aid in mathematics'.
Resumo:
In this work, we show the experience of continuing teacher education in Cartography in the period from 03/11/2009 to 03/11/2010, it was held by the Center for Continuing Education in Mathematics Education, Science and Environment (CECEMCA) - UNESP - Rio Claro, in DL (Distance Learning). This experience was through the extension course set in TelEduc platform. The course was titled Introduction to Cartography and aimed primarily: Present concepts of systematic and thematic mapping and its potential application in teaching practices, increase knowledge in the areas of Geography, Cartography and Environment; Offer alternatives for implementing content mapping in the classroom.
Resumo:
In this action research study of sixth grade mathematics, I investigated the use of meaningful homework and the implementation of presentations and its effect on students’ comprehension of mathematical concepts. I collected data to determine whether the creating of meaningful homework and the implementation of homework presentations would have a positive impact on the students’ understanding of the concepts being taught in class and the reasoning behind assigning homework. The homework was based on the lesson taught during class time. It was grade-level appropriate and contained problems similar to those students completed in class. A pre-research and post-research survey based on homework perceptions and my teaching practices was given, student interviews were conducted throughout the research period, weekly teacher journals were kept that pertained to my teaching practices and the involvement of the students that particular week, and homework assignments were collected to gauge the students’ understanding of the mathematics lessons. Most students’ perceptions on homework were positive and most understood the reasoning for homework assignments.
Resumo:
In this action research study of sixth grade mathematics, I investigate how the use of written journals facilitates the learning of mathematics for my students. I explore furthermore whether or not these writing journals support students to complete their homework. My analysis reveals that while students do not access their journals daily, when students have the opportunity to write more about one specific problem--such as finding the relationship between the area of two different sized rectangles – they, are nevertheless, more likely to explain their thoughts in-depth and go beyond the traditional basic steps to arrive at a solution. This suggests the value of integrating journal writing in a math curriculum as it can facilitate classroom discussion from the students’ written work.
Resumo:
In this action research of my seventh grade mathematics classroom, I investigated how students’ explanations of math homework would improve their learning in math. I discovered these explanations can be very beneficial in helping students to improve their understanding of current skills although it did not affect all students. As a result of this study, I plan to incorporate these student explanations in my instruction next year but not as a daily expectation.
Resumo:
In this action research study of my classroom of eighth grade mathematics, I investigated the attitudes of students toward mathematics along with their achievement levels with the use of oral presentations in my Algebra class. During the second semester the class was divided into groups of two for each presentation, changing partners each time. Every other week each group was given a math problem that required more work than a normal homework type problem. On the last day of that week the students gave a short presentation on their problem. I discovered that while there was no significant evidence that student achievement increased, the students did enjoy the different aspect of presentations in a math class. I plan to implement presentations in my classroom more often with the intent to increase student enjoyment.
Resumo:
In this action research study of my classroom of 8th grade algebra, I investigated students’ discussion of mathematics and how it relates to interest in the subject. Discussion is a powerful tool in the classroom. By relying too heavily on drill and practice, a teacher may lose any individual student insight into the learning process. However, in order for the discussion to be effective, students must be provided with structure and purpose. It is unrealistic to expect middle school age students to provide their own structure and purpose; a packet was constructed that would allow the students to both show their thoughts and work as a small group toward a common goal. The students showed more interest in the subject in question as they related to the algebra topics being studied. The students appreciated the packets as a way to facilitate discussion rather than as a vehicle for practicing concepts. Students still had a need for practice problems as part of their homework. As a result of this research, it is clear that discussion packets are very useful as a part of daily instruction. While there are modifications that must be made to the original packets to more clearly express the expectations in question, discussion packets will continue to be an effective tool in the classroom.
Resumo:
This paper estimates the impact of the use of structured methods on the quality of education for students in primary public school in Brazil. Structured methods encompass a range of pedagogical and managerial instruments applied in the educational system. In recent years, several municipalities in the state of Sao Paulo have contracted out private educational providers to implement these structured methods in their schooling systems. Their pedagogical proposal involves structuring of curriculum content, development of teacher and student textbooks, and the training and supervision of teachers anti instructors. Using a difference-in-differences estimation strategy, we find that the 4th- and 8th-grade students in the municipalities with structured methods performed better in Portuguese and mathematics than did students in municipalities not exposed to these methods. We find no differences in passing rates. A robustness test supports the assumption that there is no unobserved municipal characteristics associated with proficiency changes over time that may affect the results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Project-based education and portfolio assessments are at the forefront of educational research. This research follows the implementation of a project-based unit in a high school physics class. Students played the role of an engineering firm who designed, built and tested file folder bridges. The purpose was to determine if projectbased learning could improve student attitude toward science and related careers like engineering. Teams of students presented their work in a portfolio for a final assessment of the process of designing, building and testing their bridges.
Resumo:
Based on a review of literature of conceptual and procedural knowledge in relation to intrinsic and extrinsic motivation, the purpose of this study was to test the relationship between conceptual and procedural knowledge and intrinsic and extrinsic motivation. Thirty-eight education students with a mathematics focus (elementary or secondary) in their junior, senior, or fifth year completed a survey with a Likert scale measuring their preference to learning (conceptual or procedural) and their motivation type (intrinsic or extrinsic). Findings showed that secondary mathematics focused students were more likely to prefer learning mathematics conceptually than elementary mathematics focused students. However, secondary and elementary mathematics focused students showed an equal preference for learning mathematics procedurally and sequentially. Elementary and secondary students reported similar intrinsic and extrinsic motivation. Extrinsically motivated students preferred procedural learning more than conceptual learning. While there was no statistically significant preference with intrinsically motivated students, there was a trend favoring preference of conceptual learning over procedural learning. These results tend to support the hypothesis that mathematics focused students who prefer conceptual learning are more intrinsically motivated, and mathematics focused students who prefer procedural learning are more extrinsically motivated.