956 resultados para Education Mathematical


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of 5th grade mathematics, I investigate how to improve students’ written explanations to and reasoning of math problems. For this, I look at journal writing, dialogue, and collaborative grouping and its effects on students’ conceptual understanding of the mathematics. In particular, I look at its effects on students’ written explanations to various math problems throughout the semester. Throughout the study students worked on math problems in cooperative groups and then shared their solutions with classmates. Along with this I focus on the dialogue that occurred during these interactions and whether and how it moved students to a deeper level of conceptual understanding. Students also wrote responses about their learning in a weekly math journal. The purpose of this journal is two-fold. One is to have students write out their ideas. Second, is for me to provide the students with feedback on their responses. My research reveals that the integration of collaborative grouping, journaling, and active dialogue between students and teacher helps students develop a deeper understanding of mathematics concepts as well as an increase in their confidence as problem solvers. The use of journaling, dialogue, and collaborative grouping reveals themselves as promising learning tasks that can be integrated in a mathematics curriculum that seeks to cultivate students’ thinking and reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This action research project describes a research project designed and implemented specifically with an emphasis on the instruction of mathematical vocabulary. The targeted population was my second period classroom of sixth grade students. This group of seventeen students represented diverse socioeconomic backgrounds and abilities. The school is located in a community of a population of approximately 5,000 people in the Midwest. My research investigation focused on the use of specific methods of vocabulary instruction and students’ use of precise mathematical vocabulary in writing and speaking. I wanted to see what effects these strategies would have on student performance. My research suggested that students who struggle with retention of mathematical knowledge have inadequate language skills. My research also revealed that students who have a sound knowledge of vocabulary and are engaged in the specific use of content language performed more successfully. Final analysis indicated that students believed the use of specific mathematical language helped them to be more successful and they made moderate progress in their performance on assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of eighth grade mathematics, I investigated my students’ use of writing and solving word problems. I collected data to determine if writing and solving word problems would have a positive effect on students’ abilities to understand and solve word problems. These word problems are grade-level appropriate and are very similar to the problems on the eighth grade online assessment of state standards. Pre- and post-test data, weekly word problems that focus on specific mathematics topics, beginning and end surveys about word problem perceptions, and a teacher journal reveal that student engagement in this weekly practice of writing and solving word problems did influence the students’ overall abilities for, achievement in and attitudes toward solving word problems. Except for some students’ perceptions, the influence was largely positive. This suggests that word problems can be a constructive feature in eighth mathematics instruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of seventh grade mathematics, I investigated the use of non-traditional activities to enhance mathematical connections. The types of nontraditional activities used were hands-on activities, written explanations, and oral communication that required students to apply a new mathematical concept to either prior knowledge or a realworld application. I discovered that the use of non-traditional activities helped me reach a variety of learners in my classroom. These activities also increased my students’ abilities to apply their mathematical knowledge to different applications. Having students explain their reasoning during non-traditional activities improved their communications skills, both orally and in writing. As a result of this research, I plan to incorporate more non-traditional activities into my curriculum. In doing so, I hope to continue to increase my students’ abilities to solve problems. I also plan to incorporate the use of written explanations of my students’ mathematical reasoning in order to continue to improve their communication of mathematics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of 8th and 9th grade Algebra I students, I investigated if there are any benefits for the students in my class to learn how to read, translate, use, and understand the mathematical language found daily in their math lessons. I discovered that daily use and practice of the mathematical language in both written and verbal form, by not only me but by my students as well, improved their understanding of the textbook instructions, increased their vocabulary and also increased their understanding of their math lessons. I also found that my students remembered the mathematical material better with constant use of mathematical language and terms. As a result of this research, I plan to continue stressing the use of mathematical language and vocabulary in my classroom and will try to develop new ways to help students to read, understand, and remember mathematical language they find daily in their textbooks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of 11th grade geometry, I investigated the use of rubrics to help me assess my students during homework presentations. I wanted to know more about the processes students went through as they did their homework problems, so homework presentations were implemented with the rubrics being the main form of assessment. I discovered that students are willing to speak about mathematics and can gain more understanding of mathematical processes as a result of homework presentations. The scores of the class improved after they talked about the homework assignments with each other. As a result of this research, I plan to keep on using homework presentations in my classroom to talk about homework, but discontinue the use of rubrics in assessment of students in mathematics. I also found students going to the board to solve problems in small groups are another helpful way to use presentations prior to assessment to help me understand where the students are with a new concept prior to assigning homework or giving an assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of ten ninth grade algebra students, I investigated how my students expressed written solutions of mathematical word problems. I discovered that my students writing and performance improved as they experienced different strategies to attack problem solving. These experiences helped improve the confidence of my students in their problem solving skills and in their mathematical writing. I also discovered that my teaching style changed, as my students took on more responsibility for their learning. As a result of this research, I plan to implement problem solving activities in all my classrooms next year. I also plan to have my students develop their written communication skills by presenting their solutions to their problem solving activities in writing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my calculus classroom consisting of only 12th grade students, I investigated activities that would affect a student’s understanding of mathematical language. The goal in examining these activities in a systematic way was to see if a student’s deeper understanding of math terms and symbols resulted in a better understanding of the mathematical concepts being taught. I discovered that some students will rise to the challenge of understanding mathematics more deeply, and some will not. In the process of expecting more from students, the frustration level of both the students and the teacher increased. As a result of this research, I plan to see what other activities will enhance the understanding of mathematical language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of 8th grade mathematics, I investigated the influence of vocabulary instruction on students’ understanding of the mathematics concepts. I discovered that knowing the meaning of the vocabulary did play a major role in the students’ understanding of the daily lessons and the ability to take tests. Understanding the vocabulary and the concepts allowed the students to be successful on their daily assignments, chapter tests, and standardized achievement tests. I also discovered that using different vocabulary teaching strategies enhanced equity in my classroom among diverse learners. The knowledge of the math vocabulary increased my students’ confidence levels, which in turn increased their daily and test scores. As a result of this research, I plan to find ways to incorporate the vocabulary teaching strategies I have used into current math curriculum. I will start this process at the beginning of the next school year, and will continue looking for new strategies that will promote math vocabulary retention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my sixth grade mathematics class, I investigated the influence a change in my questioning tactics would have on students’ ability to determine answer reasonability to mathematics problems. During the course of my research, students were asked to explain their problem solving and solutions. Students, amongst themselves, discussed solutions given by their peers and the reasonability of those solutions. They also completed daily questionnaires that inquired about my questioning practices, and 10 students were randomly chosen to be interviewed regarding their problem solving strategies. I discovered that by placing more emphasis on the process rather than the product, students became used to questioning problem solving strategies and explaining their reasoning. I plan to maintain this practice in the future while incorporating more visual and textual explanations to support verbal explanations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my classroom of 8th grade mathematics, I investigated the use of daily warm-ups written in problem-solving format. Data was collected to determine if use of such warm-ups would have an effect on students’ abilities to problem solve, their overall attitudes regarding problem solving and whether such an activity could also enhance their readiness each day to learn new mathematics concepts. It was also my hope that this practice would have some positive impact on maximizing the amount of time I have with my students for math instruction. I discovered that daily exposure to problem-solving practices did impact the students’ overall abilities and achievement (though sometimes not positively) and similarly the students’ attitudes showed slight changes as well. It certainly seemed to improve their readiness for the day’s lesson as class started in a more timely manner and students were more actively involved in learning mathematics (or perhaps working on mathematics) than other classes not involved in the research. As a result of this study, I plan to continue using daily warm-ups and problem-solving (perhaps on a less formal or regimented level) and continue gathering data to further determine if this methodology can be useful in improving students’ overall mathematical skills, abilities and achievement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the effectiveness of an online mathematical problem solving course designed using a social constructivist approach for pre-service teachers. Thirty-seven pre-service teachers at the Batu Lintang Teacher Institute, Sarawak, Malaysia were randomly selected to participate in the study. The participants were required to complete the course online without the typical face-to-face classes and they were also required to solve authentic mathematical problems in small groups of 4-5 participants based on the Polya’s Problem Solving Model via asynchronous online discussions. Quantitative and qualitative methods such as questionnaires and interviews were used to evaluate the effects of the online learning course. Findings showed that a majority of the participants were satisfied with their learning experiences in the course. There were no significant changes in the participants’ attitudes toward mathematics, while the participants’ skills in problem solving for “understand the problem” and “devise a plan” steps based on the Polya’s Model were significantly enhanced, though no improvement was apparent for “carry out the plan” and “review”. The results also showed that there were significant improvements in the participants’ critical thinking skills. Furthermore, participants with higher initial computer skills were also found to show higher performance in mathematical problem solving as compared to those with lower computer skills. However, there were no significant differences in the participants’ achievements in the course based on gender. Generally, the online social constructivist mathematical problem solving course is beneficial to the participants and ought to be given the attention it deserves as an alternative to traditional classes. Nonetheless, careful considerations need to be made in the designing and implementing of online courses to minimize problems that participants might encounter while participating in such courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most common pattern of classroom discourse follows a three-part exchange of teacher initiation, student response, and teacher evaluation or follow-up (IRE/IRF) (Cazden, 2001). Although sometimes described as encouraging illusory understanding (Lemke, 1990), triadic exchanges can mediate meaning (Nassaji & Wells, 2000). This paper focuses on one case from a study of discursive practices of seven middle grades teachers identified for their expertise in mathematics instruction. The central result of the study was the development of a model to explain how teachers use discourse to mediate mathematical meaning in whole group instruction. Drawing on the model for analysis, thick descriptions of one teacher’s skillful orchestration of triadic exchanges that enhance student understanding of mathematics are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.