982 resultados para Ecological self-consolidating concrete


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of green concrete has been progressively introduced in concrete technology. At the same time, new generations of superplasticisers have become widely available and self-compacting concrete is being increasingly implemented. The aim of this research is to study the impact that different sustainable materials have on both fresh and hardened properties of Self-Compacting Fibre Reinforced Concrete (SCFRC) in order to implement their use in a precast concrete company. Different combinations of cement, mineral additions (active and inert), polypropylene fibres, superplasticisers, and aggregates have been considered. Fresh state performance has been assessed by means of: slump flow test, V-funnel, and J-ring. Concrete compressive strength values at different ages have been retained as representative of the material's performance in its hardened state. All these properties have been correlated with SCFRC proportioning parameters. The importance of interactions between mineral additions and between these and superplasticiser is emphasised, as well as the different consequences of using powders as cement replacement or as mineral additions.

Optimisation of Environment-friendly SCFRC mixes use in precast Concrete Industry (PDF Download Available). Available from: http://www.researchgate.net/publication/263304799_Optimisation_of_Environment-friendly_SCFRC_mixes_use_in_precast_Concrete_Industry [accessed Jun 5, 2015].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the study presented in this paper was to investigate the feasibility using support vector machines (SVM) for the prediction of the fresh properties of self-compacting concrete. The radial basis function (RBF) and polynomial kernels were used to predict these properties as a function of the content of mix components. The fresh properties were assessed with the slump flow, T50, T60, V-funnel time, Orimet time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 min after adding the first water. The water dosage varied from 188 to 208 L/m3, the dosage of superplasticiser (SP) from 3.8 to 5.8 kg/m3, and the volume of coarse aggregates from 220 to 360 L/m3. In total, twenty mixes were used to measure the fresh state properties with different mixture compositions. RBF kernel was more accurate compared to polynomial kernel based support vector machines with a root mean square error (RMSE) of 26.9 (correlation coefficient of R2 = 0.974) for slump flow prediction, a RMSE of 0.55 (R2 = 0.910) for T50 (s) prediction, a RMSE of 1.71 (R2 = 0.812) for T60 (s) prediction, a RMSE of 0.1517 (R2 = 0.990) for V-funnel time prediction, a RMSE of 3.99 (R2 = 0.976) for Orimet time prediction, and a RMSE of 0.042 (R2 = 0.988) for L-box ratio prediction, respectively. A sensitivity analysis was performed to evaluate the effects of the dosage of cement and limestone powder, the water content, the volumes of coarse aggregate and sand, the dosage of SP and the testing time on the predicted test responses. The analysis indicates that the proposed SVM RBF model can gain a high precision, which provides an alternative method for predicting the fresh properties of SCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete is a universal material in the construction industry. With natural resources like sand and aggregate, fast depleting, it is time to look for alternate materials to substitute these in the process of making concrete. There are instances like exposure to solar radiation, fire, furnaces, and nuclear reactor vessels, special applications like missile launching pads etc., where concrete is exposed to temperature variations In this research work, an attempt has been made to understand the behaviour of concrete when weathered laterite aggregate is used in both conventional and self compacting normal strength concrete. The study has been extended to understand the thermal behaviour of both types of laterised concretes and to check suitability as a fire protection material. A systematic study of laterised concrete considering parameters like source of laterite aggregate, grades of Ordinary Portland Cement (OPC) and types of supplementary cementitious materials (fly ash and GGBFS) has been carried out to arrive at a feasible combination of various ingredients in laterised concrete. A mix design methodology has been proposed for making normal strength laterised self compacting concrete based on trial mixes and the same has also been validated. The physical and mechanical properties of laterised concretes have been studied with respect to different variables like exposure temperature (200°C, 400°C and 600°C) and cooling environment (air cooled and water cooled). The behaviour of ferrocement elements with laterised self compacting concrete has also been studied by varying the cover to mesh reinforcement (10mm to 50mm at an interval of 10mm), exposure temperature and cooling environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, fibre-reinforced self-compacting concretes were developed for precast building components, incorporating either adherent metal fibres or polymeric synthetic slipping fibres or a combination of both. To achieve the warranted workability, compressive and splitting tensile strengths, compositions were determined by preliminary tests on self-compacting materials with various proportions of metal fibres. Bending tests in controlled deflection confirmed the positive contribution of fibres in the mechanical behaviour of self-compacting concrete. The comparison between vibrated and self-compacting concretes of similar mechanical characteristics indicated a possible better fibre-matrix bond in the case of self-compacting types. The results also showed that the properties of the hybrid fibre-reinforced self-compacting concrete could be inferred from the properties of the individual single-fibre reinforcements and their respective proportions through simple mix-rules.