968 resultados para Ecological Resources
Resumo:
Few detailed studies have been made on the ecology of the chalk streams. A complex community of plants and animals is present and much more information is required to achieve an understanding of the requirements and interactions of all the species. It is important that the rivers affected by this scheme should be studied and kept under continued observation so that any effects produced by the scheme can be detected. The report gives a brief synopsis of work carried out during the third year of a four year ecological study sponsored jointly by the Thames Water Authority and the Central Water Planning Unit. It assumes . It assumes some familiarity with the investigations carried out on the River Lambourn during the preceding three years which was sponsored jointly by the Thames Conservancy and Water Resources Board (immediate predecessors of the present sponsoring organisations). (PDF contains 35 pages)
Resumo:
A description of fisheries within a depth of 100 fathoms is provided for the eight southeastern-most islands of the Hawaiian Archipelago, known as the main Hawaiian Islands (MHI). These are the inhabited islands of the State of Hawaii and are those most subject to inshore fishing pressure, because of their accessibility. Between 1980 and 1990, an average of 1,300 short tons of fishes and invertebrates were reported annually within 100 fm by commercial fishermen. Total landings may be significantly greater, since fishing is a popular pastime of residents and noncommercial landings are not reported. Although limited data are available on noncommercial fisheries, the majority of this review is based on reported commercial landings. The principal ecological factors influencing fisheries in the MHI include coastal currents, the breadth and steepness of the coastal platform, and differences in windward and leeward climate. Expansive coastal development, increased erosion, and sedimentation are among negative human impacts on inshore reef ecosystems on most islands. Commercial fisheries for large pelagics (tunas and billfishes) are important in inshore areas around Ni'ihau, Ka'ula Rock, Kauai, and the Island of Hawaii (the Big Island), as are bottom "handline" fisheries for snappers and groupers around Kauai and Molokai. However, many more inshore fishermen target reef and estuarine species. Two pelagic carangids, "akule," Selar crumenopthalmus, and "opelu," Decapterus macarellus, support the largest inshore fisheries in the MHI. During 1980-90, reported commercial landings within three miles of shore averaged 203 and 125 t for akule and opelu, respectively. Akule landings are distributed fairly evenly throughout the MHI, while more than 72% of the state's inshore opelu landings take place on the Big Island. Besides akule and opelu, other important commercial fisheries on all the MHI include those for surgeon, soldier, parrot, and goatfishes; snappers; octopus, and various trevallies. Trends in reported landings, trips, and catch per unit effort over the last decade are outlined for these fisheries. In heavily populated areas, fishing pressure appears to exceed the capacity of inshore resources to renew themselves. Management measures are beginning to focus on methods of limiting inshore fishing effort, while trying to maintain residents' access to fishing.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).
Resumo:
In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.
Resumo:
Lake victoria is the second largest lake in the world.the lake is shatred between three East African countries (Kenya,Uganda and Tanzania) the lake basin is estimatedto have about 30 million people who depend on it as a source of fish for food,employment,income and recreation.the lake is transport locally and regionally is used for recreation and is recongnised internationally for its high fish species diversity of ecological and scientific value. This document in the first in a series to be produced on different fish production systems in Uganda and should stimulate discussions and comments to guide application of scientific findings into the policy environment.
Resumo:
The marine environment of Pakistan has been described in the context of three main regions : the Indus delta and its creek system, the Karachi coastal region, and the Balochistan coast. The creeks, contrary to concerns, do receive adequate discharges of freshwater. On site observations indicate that freshwater continues flowing into them during the lean water periods and dilutes the seawater there. A major factor for the loss of mangrove forests as well as ecological disturbances in the Indus delta is loss of the silt load resulting in erosion of its mudflats. The ecological disturbance has been aggravated by allowing camels to browse the mangroves. The tree branches and trunks, having been denuded of leaves are felled for firewood. Evidence is presented to show that while indiscriminate removal of its mangrove trees is responsible for the loss of large tracts of mangrove forests, overharvesting of fisheries resources has depleted the river of some valuable fishes that were available from the delta area. Municipal and industrial effluents discharged into the Lyari and Malir rivers and responsible for land-based pollution at the Karachi coast and the harbour. The following are the three major areas receiving land-based pollution and whose environmental conditions have been examined in detail: (l) the Manora channel, located on the estuary of the Lyari river and serving as the main harbour, has vast areas forming its western and eastern backwaters characterized by mud flats and mangroves. The discharge of industrial wastewater from the S.I.T.E. and municipal effluents from the northern and central districts into the Lyari has turned this river into an open drain. This, in turn, has caused a negative impact on the environment of the port, fish harbour, and the adjacent beaches. (2) The Gizri creek receives industrial and municipal effluents from the Malir river as well as from several industries and power stations. The highly degraded discharges from the Malir have negatively impacted the environment in this creek. (3) The coastline between the Manora channel and Gizri creek where the untreated municipal effluents are discharged by the southern districts of Karachi, is responsible for the degraded environment of the Chinna creek, and also of the beaches and the harbour. The Balochistan coast is relatively safe from land-based pollution, mainly because of the lack of industrial, urban or agricultural activity, except the Hingol river system where some agricultural activities have been initiated.
Resumo:
In the Philippines at present, milkfish farming in ponds includes a wide range of intensities, systems and practices. To make aquaculture possible, ecosystems are used as sources of energy and resources and as sinks for wastes. The growth of aquaculture is limited by the life-support functions of the ecosystem, and sustainability depends on matching the farming techniques with the processes and functions of the ecosystems, for example, by recycling some degraded resources. The fish farm has many interactions with the external environment. Serious environmental problems may be avoided if high-intensity farms are properly planned in the first place, at the farm level and at the level of the coastal zone where it can be integrated with other uses by other sectors. It is believed that the key to immediate success in the mass production of milkfish for local consumption and for export of value-added forms may be in semi-intensive farming at target yields of 3 tons per ha per year, double the current national average. Intensive milkfish farming will be limited by environmental, resource and market constraints. Integrated intensive farming systems are the appropriate long-term response to the triple needs of the next century: more food, more income, and more jobs for more people, all from less land, less resources, and less non-renewable energy.
Resumo:
Human use of water resow-ces in Uganda has grown and intensified along with population growth and increasing demand to meet the diverse human needs. In the case of Uganda's rivers, the main uses include fisheries, hydropower generation, abstraction for potable water supply, discharge of sewage and navigation. All these uses can disrupt the integrity of the aquatic ecosystem and may affect the survival of the diversity of organisms. In consideration of the need to increase electricity to meet demand, the Bujagali Hydro-power Project (BHPP) and the National Environment Management Authority (NEMA) recognised the importance of safeguards to mitigate impacts of the project. The National Fisheries Resources Research Institute (NaFIRRI) was assigned the role of providing baseline information on the aquatic ecosystem of the Upper Victoria Nile and to follow up the findings with a monitoring framework during construction and post-commissioning phases.
Resumo:
Science & Technology Basic Work Program of China: Scientific Survey of the Middle-lower Reaches of Lantsang River and the Great Shangri-La Region [2008FY110300]; National Basic Research Program of China (973 Program): Ecosystem Services and Ecological Safety of the Major Terrestrial Ecosystems of China [2009CB421106]; National Natural Science Foundation of China [30670374]; EU ; European Commission, DG Research [003874]
Resumo:
As one of the most typical wetlands, marsh plays an important role in hydrological and economic aspects, especially in keeping biological diversity. In this study, the definition and connotation of the ecological water storage of marsh is discussed for the first time, and its distinction and relationship with ecological water requirement are also analyzed. Furthermore, the gist and method of calculating ecological water storage and ecological water requirement have been provided, and Momoge wetland has been given as an example of calculation of the two variables. Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement. For reasonably spatial and temporal variation of water storage and rational water resources planning, the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions, ecological demand and actual water resources.
Resumo:
Data collected from 12 marine monitoring stations in Daya Bay from 1982 to 2004 reveal a substantial change in the ecological environment of this region. The average N/P ratio increased from 1.377 in 1985 to 49.09 in 2004. Algal species changed from 159 species of 46 genera in 1982 to 126 species of 44 genera in 2004. Major zooplankton species went from 46 species in 1983 to 36 species in 2004. The annual mean biomass of benthic animals was recorded at 123.10 gm(2) in 1982 and 126.68 g m(2) in 2004. Mean biomass and species of benthic animals near nuclear power plants ranged froth 317.9 g m(2) in 1991 to 45.24 g m(2) in 2004 and from 250 species in 1991 to 177 species in 2004. A total of 12-19 species of hermatypic corals and 13 species of mangrove plants were observed in Daya Bay from 1984 to 2002. 2008 Elsevier Ltd. All rights reserved.
Resumo:
Benefits and costs of dispersal and philopatry of the social plateau pika (Ochotona curzoniae) were studied on the Tibetan plateau for 3 years. Although short-lived, plateau pikas live in cohesive family groups that occupy burrow systems in sedge meadow habitat Most (57.8%) plateau pikas were philopatric, and dispersal movements were extremely restricted. No juvenile females or adult pikas moved more than two family ranges between years; the greatest observed dispersal distances were by two juvenile males that moved five family ranges from the family of their birth. Traversing unfamiliar habitat was not a cost of pika dispersal because most dispersers settled in families that they could easily visit before dispersal. Dispersal movements appeared to result in equalization of density among pika families, an expected result if competition for environmental resources influenced dispersal. Males did not disperse to gain advantages in competition for mates, as evidenced by their moving to families with significantly fewer females. Females, however, moved to families with significantly more males. Males provide abundant paternal care, and significantly more offspring per female survived to become adults from families with more adult males per adult female. Evidence concerning the influence of inbreeding avoidance on natal dispersal was indirect. Some males exhibited natal philopatry; thus some families had opportunity for close inbreeding. Males and females that dispersed had no opposite-sex relatives in their new families. Philopatric pikas may have benefited by remaining in families that exhibited low local densities, and philopatric females might have benefited from social cooperation with relatives.
Resumo:
Brian Garrod, Roz Wornell and Ray Youell (2006). Re-conceptualising rural resources as countryside capital: The case of rural tourism. Journal of Rural Studies, 22 (1), 117-128. RAE2008
Resumo:
Although Common Pool Resources (CPRs) make up a significant share of total income for rural households in Ethiopia and elsewhere in developing world, limited access to these resources and environmental degradation threaten local livelihoods. As a result, the issues of management, governance of CPRs and how to prevent their over-exploitation are of great importance for development policy. This study examines the current state and dynamics of CPRs and overall resource governance system of the Lake Tana sub-basin. This research employed the modified form of Institutional Analysis and Development (IAD) framework. The framework integrates the concept of Socio-Ecological Systems (SES) and Interactive Governance (IG) perspectives where social actors, institutions, the politico-economic context, discourses and ecological features across governance and government levels were considered. It has been observed that overexploitation, degradation and encroachment of CPRs have increased dramatically and this threatens the sustainability of Lake Tana ecosystem. The stakeholder analysis result reveals that there are multiple stakeholders with diverse interest in and power over CPRs. The analysis of institutional arrangements reveals that the existing formal rules and regulations governing access to and control over CPRs could not be implemented and were not effective to legally bind and govern CPR user’s behavior at the operational level. The study also shows that a top-down and non-participatory policy formulation, law and decision making process overlooks the local contexts (local knowledge and informal institutions). The outcomes of examining the participation of local resource users, as an alternative to a centralized, command-and-control, and hierarchical approach to resource management and governance, have called for a fundamental shift in CPR use, management and governance to facilitate the participation of stakeholders in decision making. Therefore, establishing a multi-level stakeholder governance system as an institutional structure and process is necessary to sustain stakeholder participation in decision-making regarding CPR use, management and governance.