1000 resultados para Ecologia marina -- Mediterrània, Mar
Resumo:
El desequilibri 238U/234Th s’utilitza per traçar el cicle de les partícules a la part més superficial dels oceans. Això és possible degut a les diferències entre els seus períodes de semidesintegració (T1/2 (234Th)=24,1 d; T1/2 (238U)=4,5 10 9 anys) i a les seves característiques biogeoquímiques: el Th presenta una gran afinitat per les partícules mentre que l’U és conservatiu en aigua de mar. En absència de partícules s’esperaria tenir equilibri secular entre ambdós radionúclids, però com que l’oceà no està lliure de partícules, el 234Th és exportat des de les capes més superficials produint-se un dèficit respecte el seu pare, l’238U. El període de semidesintegració del 234Th és molt adequat per traçar processos d’escales temporals de dies a setmanes, del mateix ordre que el desenvolupament de la floració del fitoplàncton i a la posterior exportació de partícules. En aquest treball es presenten dades obtingudes durant dues campanyes oceanogràfiques realitzades en el marc del Projecte FAMOSO (2009) en el Mediterrani nordoccidental, abans i després de la floració de fitoplàncton de primavera a la zona. Una de les peculiaritats d’aquesta regió és el procés de convecció profunda d’hivern, el qual suposa un important mecanisme de fertilització. A partir dels fluxos de 234Th obtinguts a la columna d’aigua es poden establir les pautes temporals que ha seguit el fitoplàncton en les setmanes prèvies al mostreig. Aquesta informació es compara amb els fluxos obtinguts utilitzant trampes de sediment a la deriva instal·lades durant ambdues campanyes.
Resumo:
Del 19 al 23 de setembre de 1995 es va celebrar a Jaca (Osca) el III Curs Internacional de Defensa, amb el títol específic “ El Mediterrani en el Diàleg Nord Sud”, organitzat per la Càtedra Miguel de Cervantes de l’Acadèmia General Militar i la Universitat de Saragossa. Els objectius assenyalats pels organitzadors es van centrar a potenciar l’intercanvi d’opinions entre especialistes i representants de les institucions sobre aspectes polítics, socials, econòmics i de defensa que afecten l’espai geopolític de les dues riberes del Mediterrani, i a analitzar els mecanismes de cooperació que actuen a l’àrea i la política de la Unió Europea a la zona
Resumo:
Seasonal trends in littertall and potential mineral return were studied in two cork-oak forest sites in the northeastern Iberian peninsula. The estimated average litter production was 3.9.M- gy.e1ahar for one site and 4.6 .M- gy.e1ahar for the other; these figures are similar to those reported for holm-oak (Quercus ilex) forests in the same area. Seasonal litterfall patterns were typical of Mediterranean forest ecosystems. Leaves accounted for 46 to 78% of the total dry matter. Their annual weighted-average mineral composition was low in macronutrients (N 8-9; K 4-5; Mg 0.8-1.3; Ca 9-10 and P 0.4-1 m-)g.1g and relatively high in micronutrients such as Mn (2-2.2 m-)g.1g or Fe (0.3-0.4 m)-g..1g Minimum N and P concentrations were found during the growth period. Estimates of potential mineral return for an annual cycle were N 38-52, P 2.1-5.2, K 20-28, Ca 44-53 and Mg 5.4-5.0 k-,g.1ha depending on the site biomass and fertility
Resumo:
Adaptació dels peixos de la Mediterrània al seu ambient
Resumo:
Dolphinfish (Coryphaena hippurus) is an epipelagic, highly migratory species distributed worldwide in tropical and temperate waters including the Mediterranean Sea. Protein electrophoresis analyses can provide knowledge of the genetic population structure of the species and therefore be used as a tool for fishery management. Areas sampled include the islands of Majorca and Sicily in the western Mediterranean and the Canary Islands in the eastern Atlantic. The results of the protein electrophoresis reveal a level of genetic variability similar to other highly migratory species. No differences were found among locations, and it was not possible to reject the null hypothesis of one panmictic population in the area studied
Lipid reserves of red mullet (Mullus barbatus) during pre-spawning in the northwestern Mediterranean
Resumo:
Lipid reserves are a particularly important attribute of fishes because they have a large influence on growth, reproduction and survival. This study analyses the lipid content of red mullet (Mullus barbatus) pre-spawners in three different areas of the northwestern Mediterranean in relation to trawling activities and river runoff. The muscle lipid was considered as an indicator of the somatic condition of individuals whilst the gonad lipid was used as a proxy of the energy invested in reproduction. The results show that fish with the highest muscle lipid levels inhabited the area where fishing impact was lowest. Since the abundance and biomass of polychaetes, which represent the main food source for red mullet, were found to be lower in trawled zones than in unfished ones, we suggest that differences in the muscle lipid levels between areas might be attributed to variation in prey abundance in relation to fishing impact. However, no impact of river runoff on lipid reserves of red mullet was observed. The results also show that muscle and gonad lipid reserves are not related to each other during pre-spawning
Resumo:
This study analyses for the first time the lipid (energy) reserves of European hake (Merluccius merluccius) in the north-western Mediterranean from an ecophysiological perspective. Results show that there is a progressive accumulation of lipids in the liver of maturing hake -where the bulk of the fat is stored- as individuals grow. Results also indicate that female pre-spawners expend much energy on reproductive activities since they present lower liver lipid reserves than juveniles and maturing individuals. Furthermore, results show that female pre-spawners with higher lipid reserves in their livers had a higher amount of lipids in their ovaries, suggesting that maternal condition (spawner quality) may affect the reproductive potential of hake. Overall, the results of this study suggest that the analysis of liver lipid reserves during pre-spawning, along with the evaluation of the gonadosomatic index and the consideration of the reproductive stage, can contribute to improve the estimation of the reproductive potential of gadoid species such as hake
Resumo:
The natural toxicity of cnidarians, bryozoans and tunicates in two caves was assessed using the Microtox® technique in spring and autumn. One cave was located in the Cabrera Archipelago (Balearic Islands) and the other in the Medes Islands (Catalan littoral). The organisms analysed were good representatives of the coverage of each Phylum in the communities; however, these Phyla are less abundant than sponges which are the dominant group in these caves. Seventy-one percent of the species of cnidarians and bryozoans analysed were toxic in one of the caves, communities or seasons, which indicates the relevance of bioactive species in these groups. The tunicate Lissoclinum perforatum was the most toxic species. Although all three Phyla had some highly toxic species, a common pattern that related the caves, communities and seasons was not found. Seasonal variation of toxicity in cnidarians and bryozoans was higher in the Cabrera than in the Medes cave. Moreover, variation in toxicity either between communities or between seasons was a common trait for most cnidarians and bryozoans, whereas tunicates remained toxic throughout communities and seasons.
Resumo:
Temporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. FST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c. 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established.
Resumo:
The Mediterranean Sea is a relative newcomer to Earth"s landscape. Due to its complex tectonic history, this mid-latitude sea is composed of a cluster of basins. Their seascape is in most cases dominated by geologically young structures, but also by sedimentary processes. Among the latter, sedimentary processes related to the dynamics of the largest rivers in the Mediterranean (Ebro, Rhône, Po, Danube, and Nile) stand out. This overview article illustrates the main sedimentary processes and their products contributing to shape the Mediterranean seascape within a source-tosink approach. To highlight this approach, this article mainly focuses on one of the EUROSTRATAFORM project study areas: the northwestern Mediterranean.
Resumo:
Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results: A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions: S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.
Resumo:
We compared specimens of Tripterygion tripteronotus from 52 localities of the Mediterranean Sea and adjacent waters, using four gene sequences (12S rRNA, tRNA-valine, 16S rRNA and COI) and morphological characters. Two well-differentiated clades with a mean genetic divergence of 6.89±0.73% were found with molecular data, indicating the existence of two different species. These two species have disjunctive geographic distribution areas without any molecular hybrid populations. Subtle but diagnostic morphological differences were also present between the two species. T. tripteronotus is restricted to the northern Mediterranean basin, from the NE coast of Spain to Greece and Turkey, including the islands of Malta and Cyprus. T. tartessicum n. sp. is geographically distributed along the southern coast of Spain, from Cape of La Nao to the Gulf of Cadiz, the Balearic Islands and northern Africa, from Morocco to Tunisia. According to molecular data, these two species could have diverged during the Pliocene glaciations 2.7-3.6 Mya.
Resumo:
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m22). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Resumo:
About sixty small water bodies (coastal lagoons, marshes, salt pans, channels, springs, etc.) of the Spanish Mediterranean coast were sampled seasonally for one year (1979-1980), in order to study different aspects of their chemical composition. The concentrations of major ions (alkalinity, Cl-, Ca2+, Mg2+, Na+, and K+), nutrients (N.NO-3, N.NO2-, TRP and Si), oxygen and pH were determined for this purpose. The salt concentrations measured range between 0.4 and 361.3 g l-1. The samples have been divided into four classes of salinity (in g l-1): Cl, S < 5; C2, 5 40. Within these classes, the pattern of ionic dominance recorded is remarkably constant and similar to that found in most coastal lagoons (Cl- > So42- > Alk., for the anions, and Na+ > Mg2+ > Ca2+ > K+, for the cations), although other models occur especially in the first class. The dominance of Na+ and Cl-, as well as the molar ratios Mg2+/Ca2+ and Cl- / SO42- ,clearly increase from class Cl to class C4. The hyperhaline waters include different subtypes of the major brine type"c",, of EUGSTER & HARDIE (1978), the Na+ - (Mg2+) - Cl- - (SO42-) being the most frequent. Nutrient concentrations fall within a wide range (N.NO3 from 0.1 to 1100 mg-at 1-1; PRT from 0.01 to 23.56 mg-at l-1 and Si from 1.0 to 502.0 mg-at l-1). The oxygen values are very variable too, ranging between 0 and 14.4 ml l-1. Four different patterns of nutrient distribution have been distinguished based on the mean concentrations of N.NO3-, and TRP (mean values in mg-at l-1): A, N.NO3- < 10, TRP > l ; B, N.NO3- > 100, TRP < 1; C, 10 < N.NO3- < 100, TRP < 1; C, D, N.NO3- < 10, TRP < 1. As a rule, lagoons of low salinity (C1 and C2 classes) display the nutrient pattern C, and lagoons of high salinity (C3 and C4) show the nutrient pattern D. Model A only appears in waters of very low salinity, whereas model B does not seem to be related to salinity.