947 resultados para Echocardiography, Doppler, Color
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
The subjective interpretation of dobutamine echocardiography (DBE) makes the accuracy of this technique dependent on the experience of the observer, and also poses problems of concordance between observers. Myocardial tissue Doppler velocity (MDV) may offer a quantitative technique for identification of coronary artery disease, but it is unclear whether this parameter could improve the results of less expert readers and in segments with low interobserver concordance. The aim of this study was to find whether MDV improved the accuracy of wall motion scoring in novice readers, experienced echocardiographers, and experts in stress echocardiography, and to identify the optimal means of integrating these tissue Doppler data in 77 patients who underwent DBE and angiography. New or worsening abnormalities were identified as ischemia and abnormalities seen at rest as scarring. Segmental MDV was measured independently and previously derived cutoffs were applied to categorize segments as normal or ab normal. Five strategies were used to combine MDV and wall motion score, and the results of each reader using each strategy were compared with quantitative coronary angiography. The accuracy of wall motion scoring by novice (68 +/- 3%) and experienced echocardiographers (71 +/- 3%) was less than experts in stress echocardiography (88 +/- 3%, p < 0.001). Various strategies for integration with MDV significantly improved the accuracy of wall motion scoring by novices from 75 +/- 2% to 77 +/- 5% (p < 0.01). Among the experienced group, accuracy improved from 74 +/- 2% to 77 +/- 5% (p < 0.05), but in the experts, no improvement was seen from their baseline accuracy. Integration with MDV also improved discordance related to the basal segments. Thus, use of MDV in all segments or MDV in all segments with wall motion scoring in the apex offers an improvement in sensitivity and accuracy with minimal compromise in specificity. (C) 2001 by Excerpta Medica, Inc.
Resumo:
Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.
Resumo:
The aim of this study was to investigate the agreement between diagnoses of calcified atheroma seen on panoramic radiographs and color Doppler images. Our interest stems from the fact that panoramic images can show the presence of atheroma regardless of the level of obstruction detected by color Doppler images. Panoramic and color Doppler images of 16 patients obtained from the archives of the Health Department of the city of Valença, RJ, Brazil, were analyzed in this study. Both sides of each patient were observed on the images, with a total of 32 analyzed cervical regions. The level of agreement between diagnoses was analyzed using the Kappa statistics. There was a high level of agreement, with a Kappa value of 0.78. In conclusion, panoramic radiographs can help detecting calcifications in the cervical region of patients susceptible to vascular diseases predisposing to myocardial infarction and cerebrovascular accidents. If properly trained and informed, dentists can refer their patients to a physician for a cardiovascular evaluation in order to receive proper and timely medical treatment.
Resumo:
To determine reference values for tissue Doppler imaging (TDI) and pulsed Doppler echocardiography for left ventricular diastolic function analysis in a healthy Brazilian adult population. Observations were based on a randomly selected healthy population from the city of Vitoria, Espirito Santo, Brazil. Healthy volunteers (n = 275, 61.7% women) without prior histories of cardiovascular disease underwent transthoracic echocardiography. We analyzed 175 individuals by TDI and evaluated mitral annulus E`- and A`-waves from the septum (S) and lateral wall (L) to calculate E`/A` ratios. Using pulsed Doppler echocardiography, we further analyzed the mitral E- and A-waves, E/A ratios, isovolumetric relaxation times (IRTs), and deceleration times (DTs) of 275 individuals. Pulsed Doppler mitral inflow mean values for men were as follows: E-wave: 71 +/- 16 cm/sec, A-wave: 68 +/- 15 cm/sec, IRT: 74.8 +/- 9.2 ms, DT: 206 +/- 32.3 ms, E/A ratio: 1.1 +/- 0.3. Pulsed Doppler mitral inflow mean values for women were as follows: E-wave: 76 +/- 17, A-wave: 69 +/- 14 cm/sec, IRT: 71.2 +/- 10.5 ms, DT: 197 +/- 33.3 ms, E/A ratio: 1.1 +/- 0.3. IRT and DT values were higher in men than in women (P = 0.04 and P = 0.007, respectively). TDI values in men were as follows: E`S: 11 +/- 3 cm/sec, A`S: 13 +/- 2 cm/sec, E`S/A`S: 0.89 +/- 0.2, E`L: 14 +/- 3 cm/sec, A`L: 14 +/- 2 cm/sec, E`L/A`L: 1.1 +/- 0.4. E-wave/ E`S ratio: 6.9 +/- 2.2; E-wave / E`L ratio: 4.9 +/- 1.7. In this study, we determined pulsed Doppler and TDI derived parameters for left ventricular diastolic function in a large sample of healthy Brazilian adults. (Echocardiography 2010;27:777-782).
Resumo:
To compare color Doppler imaging (CDI) parameters of the superior ophthalmic vein (SOV) in patients with Graves` orbitopathy (GO) and in normal controls. Forty-three GO patients and 14 normal controls underwent CDI of the SOV. Patients had either fibrotic (lipogenic or myogenic) or congestive orbitopathy. The findings for each group were compared. Fifty-eight orbits with fibrotic orbitopathy, 28 with congestive orbitopathy, and 28 from controls, were studied. In the congestive group, SOV flow was detected in 13, undetectable in 11, and reversed in four orbits; in the fibrotic group, it was present in 41 and undetectable in 17 orbits. In normal controls, SOV flow was detected in 25 and undetectable in three orbits. The differences among the three groups were significant. There was also a significant difference between controls and the congestive GO orbits but not between the fibrotic group and the other two groups. Fibrotic myogenic orbitopathy patients displayed a significantly smaller SOV flow than patients with lipogenic orbitopathy. SOV was significantly reduced in orbits with congestive GO or with myogenic fibrotic GO, but not in orbits with fibrotic lipogenic orbitopathy. SOV congestion may be a contributing pathogenic factor in both congestive and fibrotic myogenic Graves` orbitopathy.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Objective-To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Design-Cohort study. Setting-Regional cardiothoracic unit. Patients-49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Main outcome measures-Regional myocardial perfusion by SPECT, performed with Tc-99m tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Results-Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wail, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Conclusions-Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.
Resumo:
Color Doppler ultrasound is a new method for documenting fluid leakage in the setting of video-urodynamic testing. In order to compare color Doppler ultrasound with traditional fluoroscopic imaging we performed a prospective blinded comparative clinical study. Fifty-two consecutive patients undergoing urodynamic investigations for symptoms of incontinence or prolapse were examined using fluoroscopy and translabial color Doppler ultrasound to document stress leakage. The investigators were blinded to each other's results. Both tests were performed at maximum bladder capacity and with an indwelling 5 Fr microtransducer catheter, in both the supine and the erect positions. Equivalent results for both methods were obtained in 48 out of 52 patients (Cohen's kappa = 0.82). It was therefore concluded that translabial color Doppler ultrasound imaging can reliably demonstrate leakage through the female urethra on Valsalva maneuver or coughing.
Resumo:
Although cardiac dysfunction in hereditary hemochromatosis (HHC) can be evaluated by conventional echocardiography, findings are often not specific. To test the hypothesis that the assessment of (1) conventional Doppler left ventricular filling indexes and (2) intrinsic elastic properties of the myocardium by Doppler tissue echocardiography can both enhance the accuracy of echocardiographic diagnosis of cardiac involvement in HHC, a group of 18 patients with HHC (mean age 50+/-7 years) and 22 age-matched healthy subjects were studied. The following indexes were characteristic for HHC: (1) the duration of atrial reversal measured from pulmonary venous flow (ms) was longer(118+/-20 vs 90+/-16; P
Resumo:
Background Systolic myocardial Doppler velocity accurately identifies coronary artery disease. However, these velocities may be affected by age, hemodynamic responses to stress, and left ventricular cavity size. We sought to examine the influences of these variables on myocardial velocity during dobutamine stress in patients with normal wall motion. Methods One hundred seventy-nine consecutive patients with normal dobutamine echocardiograms were studied. Color myocardial tissue Doppler data were obtained at rest and peak stress, and peak systolic myocardial velocity (PSV) was measured in all basal and midventricular segments. Velocities at rest and peak stress were compared with left ventricular diastolic and systolic volumes, blood pressure, heart rate, and age by Pearson correlation and interdecile analysis by use of analysis of variance. Results The only clinical variable correlating with velocity was age; PSV showed only mild correlation with age at rest (r(2) = 0.01, P = .001) and peak stress (r(2) = 0.02, P = .001), but the normal peak velocity was significantly different between the extremes of age (<44 years and >74 years). There was very weak correlation of PSV with systolic and diastolic blood pressure (r(2) < 0.01), heart rate (r(2) < 0.01), systemic vascular resistance (r(2) = 0.08), and left ventricular volumes (r(2) < 0.01). Conclusions Peak systolic velocity during dobutamine stress is relatively independent of hemodynamic factors and left ventricular cavity size. The extremes of age may influence peak systolic Doppler velocities. These results suggest that peak systolic velocity may be a robust quantitative measure during dobutamine echocardiography across most patient subgroups.
Resumo:
Quantification of stress echocardiography may overcome the training requirements and subjective nature of visual wall motion score (WMS) assessment, but quantitative approaches may be difficult to apply and require significant time for image processing. The integral of long-axis myocardial velocity is displacement, which may be represented as a color map over the left ventricular myocardium. This study was designed to explore the feasibility and accuracy of measuring long-axis myocardial displacement, derived from tissue Doppler, for the detection of coronary artery disease (CAD) during dobutamine stress echocardiography (DBE). One hundred thirty patients underwent standard DBE, including 30 patients at low risk of CAD, 30 patients with normal coronary angiography (both groups studied to define normal ranges of displacement), and 70 patients who underwent coronary angiography in whom the accuracy of normal ranges was tested. Regional myocardial displacement was obtained by analysis of color tissue Doppler apical images acquired at peak stress. Displacement was compared with WMS, and with the presence of CAD by angiography. The analysis time was 3.2 +/- 1.5 minutes per patient. Segmental displacement was correlated with wall motion (normal 7.4 +/- 3.2 mm, ischemia 5.8 +/- 4.2 mm, viability 4.6 +/- 3.0 mm, scar 4.5 +/- 3.5 mm, p <0.001). Reversal of normal base-apex displacement was an insensitive (19%) but specific (90%) marker of CAD. The sum of displacements within each vascular territory had a sensitivity and specificity of 89% and 79%, respectively, for prediction of significant CAD, compared with 86% and 78%, respectively, for WMS (p = NS). The displacements in the basal segments had a sensitivity and specificity of 83% and 78%, respectively (p = NS). Regional myocardial displacement during DBE is feasible and offers a fast and accurate method for the diagnosis of CAD. (C),2002 by Excerpta Medica, Inc.