979 resultados para Eccentric exercise
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciada em Fisioterapia
Resumo:
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.
Resumo:
The purpose of this study was to investigate if chronic eccentric strength training (ST) affects heart rate (HR) and heart rate variability (HRV) during sub-maximal isometric voluntary contractions (SIVC). The training group (TG) (9 men, 62 ± 2) was submitted to ST (12 weeks, 2 days/week, 2 - 4 sets of 8-12 repetitions at 75-80% peak torque (PT). The control group (CG) (8 men, 64 ± 4) did not perform ST. The HR and the HRV (RMSSD index) were evaluated during SIVC of the knee extension (15, 30 and 40% of PT). ST increased the eccentric torque only in TG, but did not change the isometric PT and the duration of SIVC. During SIVC, the HR response pattern and the RMSSD index were similar for both groups in pre- and post-training evaluations. Although ST increased the eccentric torque in the TG, it did not generate changes in HR or HRV. © Springer-Verlag 2008.
Resumo:
Contextualização:Ações concêntricas apresentam maior estresse cardiovascular quando comparadas às excêntricas. Entretanto, não se sabe a influência desses tipos de ações no comportamento da modulação autonômica cardíaca durante o processo de recuperação pós-esforço.Objetivo:Comparar o efeito de um treinamento resistido para o grupo extensor do joelho realizado com ênfase concêntrica vs excêntrica sobre a força muscular e a recuperação pós-exercício considerando índices de variabilidade de frequência cardíaca (VFC) em jovens saudáveis.Método:Cento e cinco homens, com idades entre 18 e 30 anos, foram randomizados em quatro grupos: controle concêntrico (CCONC), controle excêntrico (CEXC), treinamento concêntrico (TCONC) e treinamento excêntrico (TEXC). Os grupos CCONC e CEXC realizaram uma sessão de exercício reduzido (ER) para o grupo extensor do joelho [três séries de uma repetição a 100% de uma repetição máxima (1RM)], e os grupos TCONC e TEXC realizaram dez sessões de treinamento. A VFC foi analisada no momento basal e na recuperação após as sessões (T1, T2, T3 e T4).Resultados:Observou-se aumento da força muscular para o grupo TEXC. Em relação à modulação autonômica cardíaca, observou-se, em comparação ao momento basal, aumento dos índices SDNN e SD2 no momento T1 nos grupos CCONC e CEXC e aumento dos índices RMSSD, SD1 e AF (ms2) nos momentos T1, T2 e T4 no grupo TEXC.Conclusões:Conclui-se que o treinamento resistido realizado com ênfase em contrações excêntricas promoveu ganho de força e aumento da modulação vagal cardíaca durante o processo de recuperação em relação à condição basal.
Resumo:
This study evaluated the effects of 8 weeks of eccentric endurance training (EET) in male subjects (age range 42-66 years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET ( n=6) was done on a conventional cycle ergometer and EET ( n=6) on a custom-built motor-driven ergometer. During the first 5 weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8) W [mean (SE)] for CET and 338 (34) W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60 degrees s(-1) and 120 degrees s(-1), respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subjects.
Resumo:
We studied the effects of different protocols of post-disuse rehabilitation on angiogenesis and myosin heavy chain (MHC) content in rat hindlimb muscles after caudal suspension. Thirty female Wistar rats were divided into five groups: (1) Control I, (2) Control II, (3) Suspended, (4) Suspended trained on declined treadmill, and (5) Suspended trained on flat treadmill. Fragments of the soleus and tibialis anterior (TA) muscles were frozen and processed by electrophoresis and immunohistochemistry (CD31 antibody). Hindlimb suspension caused reduction of capillary/fiber (C/F) ratios and contents of MHC type I (MHCI) in the soleus in parallel to increased capillary density. Flat treadmill protocols increased the content of the MHCI isoform. The C/F ratio was increased by concentric training after hypokinesis, but was not modified by eccentric training, which caused a greater reduction of capillary density compared to the other protocols. In the TA muscle, hindlimb suspension caused a non-significant increase in capillary density and C/F ratio with limited changes in MHC. The present data demonstrate that the different training protocols adopted and the functional performance of the muscles analyzed caused specific changes in capillarization and in the content of the various MHC types. (C) 2010 Published by Elsevier GmbH.
Resumo:
Abstract Introduction: Exhaustive and/or unaccustomed exercise, mainly those involving eccentric muscle actions, induces temporary muscle damage, evidenced by Delayed Onset Muscle Soreness. Different strategies to recover the signs and symptoms of this myogenic condition have been studied by researchers, as a result a significant number of articles on this issue have been published. Purpose: A systematic review was conducted to assess the evidence of the physiotherapeutic interventions of exercise-induced muscle damage. Methods: The electronic data bases were searched, including MEDLINE (1996-2011), CINHAL (1982- 2011), EMBASE (1988-2011), PEDro (1950-2011), and SPORTDiscus (1985-2011). Systematic review was limited to randomized control trials (RCTs) studies, written in English or Portuguese, which included physiotherapeutic interventions, namely massage, cryotherapy, stretching and low-intensity exercise, on adult human subjects (18-60 years old) of either gender. Studies were excluded when the intervention could not be assessed independently. The methodological quality of RCTs was independently assessed with the PEDro Scale by three reviewers. Results: Thirty-three studies were included in the systematic review; eight analyzed the effects of the massage, ten analyzed the effects of the cryotherapy, eight the effect of stretching and seventeen focused low-intensity exercise intervention. The results suggest that massage is the most effective intervention and that there is inconclusive evidence to support the use of cryotherapy; whereas the other conventional, namely stretching and low-intensity exercise, there is no evidence to prove their efficacy. Conclusion: The results allow the conclusion that massage is the physiotherapeutic intervention that demonstrated to be the most effective in the relief of symptoms and signs of exercise-induced muscle damage, as a result, massage should still be used in the muscular recovery after sports activities.
Resumo:
We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.
Resumo:
Background: The literature reports that the eccentric muscular action produces greater force and lower myoelectric activity than the concentric muscular action, while the heart rate (HR) responses are bigger during concentric contraction. Objectives: To investigate the maximum average torque (MAT), surface electromyographic (SEMG) and the heart rate (HR) responses during different types of muscular contraction and angular velocities in older men. Methods: Twelve healthy men (61.7 +/- 1.6years) performed concentric (C) and eccentric (E) isokinetic knee extension-flexion at 60 degrees/s and 120 degrees/s. SEMG activity was recorded from vastus lateralis muscle and normalized by Root Mean Square-RMS (mu V) of maximal isometric knee extension at 60 degrees. HR (beats/min) and was recorded at rest and throughout each contraction. The data were analyzed by the Friedman test for repeated measures with post hoc Dunn's test (p<0.05). Results: The median values of MAT (N.m/kg) was smaller and the RMS (mu V) was larger during concentric contraction (C60 degrees/s=2.80 and 0.99; C120 degrees/s=2.46 and 1.0) than eccentric (E60 degrees/s=3.94 and 0.85; E120 degrees/s=4.08 and 0.89), respectively. The HR variation was similar in the four conditions studied. Conclusion: The magnitude of MAT and RMS responses in older men were dependent of the nature of the muscular action and independent of the angular velocity, whereas HR response was not influenced by these factors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings: quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60 degrees s(-1) and 180 degrees s(-1). In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180 degrees s(-1) (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180 degrees s(-1) decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electronnyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180 degrees s(-1)), probably as result of peripheral fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Due to a shortage of textbooks with specific data on muscular activity concerning physical conditioning and sports, we analysed electromyographically the muscles pectoralis major and deltoideus anterior, bilaterally, in inclined flying exercises, during the concentric and eccentric phases, with external loads of 25, 50, 75 and 100% of the maximum load. The electromyographic analysis was performed in eleven male volunteers with MEDITRACE-200 surface electrodes connected to a six-channel biologic signal acquisition module coupled to a PC/AT computer. The electromyographic signals were processed and the obtained effective values were normalized through maximum voluntary isometric contraction. Statistically, the results showed that all the muscles studied presented significant differences between the concentric and the eccentric phases, with higher electromyographic activity during the concentric phase. By analysing the different loads for each muscle in both phases, significant electromyographic activity was observed for all muscles. When the effect of each load on each muscle during the concentric phase was analysed, it was noticed that the muscles on the left were more active than those on the right side, while in the eccentric phase the muscles had different behavior.
Resumo:
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VOax). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (90% VOax). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. © 2013 Cláudio de Oliveira Assumpção et al.