907 resultados para Eccentric Loading
Resumo:
There are presently over 182 RBC plants, treating domestic wastewater, in the Republic of Ireland, 136 of which have been installed since 1986. The use of this treatment plant technology, although not new, is becoming increasingly popular. The aim of this research was to assess the effects that a household detergent has on rotating biological contractor treatment plant efficiency. Household detergents contribute phosphorus to the surrounding environment and can also remove beneficial biomass from the disc media. A simple modification was made to a conventional flat disc unit to increase the oxygen transfer of the process. The treatment efficiency of the modified RBC (with aeration cups attached) was assessed against a parallel conventional system, with and without degergent loading. The parameters monitored were chemical oxygen demand (COD), bio-chemical oxygen demand (BOD), nitrates, phosphates, dissolved oxygen, the motors power consumption, pH, and temperature. Some microscopic analysis of the biofilm was also to be carried out. The treatment efficiency of both units was compared, based on COD/BOD removal. The degree of nitrification achievable by both units was also assessed with any fluctuations in pH noted. Monitoring of the phosphorus removal capabilities of both units was undertaken. Relationships between detergent concentrations and COD removal efficiencies were also analysed.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015
Resumo:
BACKGROUND: The main objective of this study was to explore the effect of acute creatine (Cr) ingestion on the secretion of human growth hormone (GH). METHODS: In a comparative cross-sectional study, 6 healthy male subjects ingested in resting conditions a single dose of 20 g creatine (Cr-test) vs a control (c-test). During 6 hours the Cr, creatinine and GH concentrations in blood serum were measured after Cr ingestion (Cr-test). RESULTS: During the Cr-test, all subjects showed a significant stimulation of GH (p<0.05), but with a large interindividual variability in the GH response: the difference between Cr-test and c-test averaged 83% (SD 45%). For the majority of subjects the maximum GH concentration occurred between 2 hrs and 6 hrs after the acute Cr ingestion. CONCLUSIONS: In resting conditions and at high dosages Cr enhances GH secretion, mimicking the response of strong exercise which also stimulates GH secretion. Acute body weight gain and strength increase observed after Cr supplementation should consider the indirect anabolic property of Cr.
Resumo:
Objective: To measure renal tissue oxygenation in young normo-and hypertensive volunteers under conditions of salt loading and depletion using blood oxygen level dependent magnetic resonance imaging (BOLD-MRI). Design and Methods: Ten normotensive (NT) male volunteers (age 26.5_7.4 y) and eight non-treated, hypertensive (HT) male volunteers (age 28.8_5.7 y) were studied after one week on a high salt (HS) regimen (6g of salt/day added to their normal regimen) and again after one week of a low sodium diet (LS). On the 8th day, BOLD-MRI was performed under standard hydration conditions. Four coronal slices were selected in each kidney, and combination sequence was used to acquire T2* weighted images. The mean R2* (1/T2*) was measured to determine cortical and medullar oxygenation. Results: Baseline characteristics and their changes are shown in the table. The mean cortical R2* was not different under conditions of HS or LS (17.8_1.3 vs. 18.2_0.6 respectively in NT group, p_0.27; 17.4_0.6 vs 17.8_0.9 in HT group, p_0.16). However, the mean medullary R2* was significantly lower under LS conditions in both groups (31.3_0.6 vs 28.1_0.8 in NT group, p_0.05; 30.3_0.8 vs 27.9_1.5 in HT group, p_0.05), corresponding to higher medullary oxygenation as compared to HS conditions, without significant changes in hemoglobin or hematocrit values. The salt induced changes in medullary oxygenation were comparable in the two groups (ANOVA, p_0.1). Conclusion: Dietary sodium restriction leads to increased renal medullary oxygenation compared to high sodium intake in normo-and hypertensive subjects. This observation may in part explain the potential renal benefits of a low sodium intake.
Resumo:
Rapport de synthèse:Le but de cette étude était d'investiguer pour la première fois chez l'homme l'effet du sodium alimentaire et de l'hypertension artérielle sur l'oxygénation tissulaire par une technique spéciale d'imagerie à résonance magnétique nommée 'BOLD-IRM' (Blood Oxygen Level Dependent-IRM). Le BOLD-IRM est une technique nouvelle qui permet de mesurer la bio disponibilité tissulaire d'oxygène de façon non-invasive chez l'homme, en utilisant le déoxyhémoglobine comme produit de contraste endogène.Le rational de cette étude était double. Premièrement, des changements dans l'apport sodique alimentaire devraient théoriquement influencer l'oxygénation tissulaire rénale, étant donné que la réabsorption tubulaire du sodium est un transport actif nécessitant de l'énergie et de l'oxygène. Deuxièmement, des études chez l'animal suggèrent une rôle possible de l'hypoxie tissulaire dans le développement de la néphropathie hypertensive.Nous avons déterminé l'oxygénation rénale avec le BOLD-IRM chez dix hommes normo tendus (âgés de 26.5±7.4 ans) et huit hommes hypertendus non-traités (âgés de 28.8±5.7 ans) une semaine après un régime riche en sel (>200 mmol/jour), et de nouveau une semaine après un régime pauvre en sel (<100 mmol/jour). En parallèle, nous avons mesuré la clearance de l'inuline, du p- aminohippurate (PAH) et du lithium endogène, afin de déterminer respectivement la filtration glomérulaire, le flux sanguin rénal et le 'renal sodium handling', tous des paramètres ayant la capacité d'influencer la consommation et/ou la disponibilité d'oxygène tissulaire. Nous nous attendions d'une côté à une oxygénation rénale diminuée chez les sujets hypertendus par rapport aux sujets normo tendus, et d'une autre côté à une augmentation de l'oxygénation tissulaire rénale après une semaine de régime pauvre en sel par rapport à la phase d'un régime riche en sel.Nous retenons comme résultat principal une augmentation de l'oxygénation rénale médullaire suite à une restriction sodique par rapport à un régime riche en sel chez tous les participants (normo-et hypertendus). Chez les participants normotendus ces changements correlaient avec des changements dans le transport actif du sodium, et ceci indépendamment du flux sanguin rénal. Contrairement à ce qu'on attendait, l'oxygénation rénale médullaire était plus élevé chez les sujets hypertendus par rapport aux sujets normotendus.En résumé, ces observations offrent possiblement une explication pour les bénéfices rénaux liés à un régime pauvre en sel. En plus, la combinaison d'études de clearance et le BOLD- IRM comme utilisé dans cette étude se sont révélés un outil performant et prometteur qui peut stimuler la recherche dans ce domaine.
Resumo:
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.
Resumo:
INTRODUCTION Hemodynamic resuscitation should be aimed at achieving not only adequate cardiac output but also sufficient mean arterial pressure (MAP) to guarantee adequate tissue perfusion pressure. Since the arterial pressure response to volume expansion (VE) depends on arterial tone, knowing whether a patient is preload-dependent provides only a partial solution to the problem. The objective of this study was to assess the ability of a functional evaluation of arterial tone by dynamic arterial elastance (Ea(dyn)), defined as the pulse pressure variation (PPV) to stroke volume variation (SVV) ratio, to predict the hemodynamic response in MAP to fluid administration in hypotensive, preload-dependent patients with acute circulatory failure. METHODS We performed a prospective clinical study in an adult medical/surgical intensive care unit in a tertiary care teaching hospital, including 25 patients with controlled mechanical ventilation who were monitored with the Vigileo(®) monitor, for whom the decision to give fluids was made because of the presence of acute circulatory failure, including arterial hypotension (MAP ≤65 mmHg or systolic arterial pressure <90 mmHg) and preserved preload responsiveness condition, defined as a SVV value ≥10%. RESULTS Before fluid infusion, Ea(dyn) was significantly different between MAP responders (MAP increase ≥15% after VE) and MAP nonresponders. VE-induced increases in MAP were strongly correlated with baseline Ea(dyn) (r(2) = 0.83; P < 0.0001). The only predictor of MAP increase was Ea(dyn) (area under the curve, 0.986 ± 0.02; 95% confidence interval (CI), 0.84-1). A baseline Ea(dyn) value >0.89 predicted a MAP increase after fluid administration with a sensitivity of 93.75% (95% CI, 69.8%-99.8%) and a specificity of 100% (95% CI, 66.4%-100%). CONCLUSIONS Functional assessment of arterial tone by Ea(dyn), measured as the PVV to SVV ratio, predicted arterial pressure response after volume loading in hypotensive, preload-dependent patients under controlled mechanical ventilation.
Resumo:
OBJECTIVES: Renal tubular sodium handling was measured in healthy subjects submitted to acute and chronic salt-repletion/salt-depletion protocols. The goal was to compare the changes in proximal and distal sodium handling induced by the two procedures using the lithium clearance technique. METHODS: In nine subjects, acute salt loading was obtained with a 2 h infusion of isotonic saline, and salt depletion was induced with a low-salt diet and furosemide. In the chronic protocol, 15 subjects randomly received a low-, a regular- and a high-sodium diet for 1 week. In both protocols, renal and systemic haemodynamics and urinary electrolyte excretion were measured after an acute water load. In the chronic study, sodium handling was also determined, based on 12 h day- and night-time urine collections. RESULTS: The acute and chronic protocols induced comparable changes in sodium excretion, renal haemodynamics and hormonal responses. Yet, the relative contribution of the proximal and distal nephrons to sodium excretion in response to salt loading and depletion differed in the two protocols. Acutely, subjects appeared to regulate sodium balance mainly by the distal nephron, with little contribution of the proximal tubule. In contrast, in the chronic protocol, changes in sodium reabsorption could be measured both in the proximal and distal nephrons. Acute water loading was an important confounding factor which increased sodium excretion by reducing proximal sodium reabsorption. This interference of water was particularly marked in salt-depleted subjects. CONCLUSION: Acute and chronic salt loading/salt depletion protocols investigate different renal mechanisms of control of sodium balance. The endogenous lithium clearance technique is a reliable method to assess proximal sodium reabsorption in humans. However, to investigate sodium handling in diseases such as hypertension, lithium should be measured preferably on 24 h or overnight urine collections to avoid the confounding influence of water.
Resumo:
For single-user MIMO communication with uncoded and coded QAM signals, we propose bit and power loading schemes that rely only on channel distribution information at the transmitter. To that end, we develop the relationship between the average bit error probability at the output of a ZF linear receiver and the bit rates and powers allocated at the transmitter. This relationship, and the fact that a ZF receiver decouples the MIMO parallel channels, allow leveraging bit loading algorithms already existing in the literature. We solve dual bit rate maximization and power minimization problems and present performance resultsthat illustrate the gains of the proposed scheme with respect toa non-optimized transmission.
Resumo:
The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.
Resumo:
A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.
Resumo:
The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.
Resumo:
To understand whether retailers should consider consumer returns when merchandising, we study howthe optimal assortment of a price-taking retailer is influenced by its return policy. The retailer selects itsassortment from an exogenous set of horizontally differentiated products. Consumers make purchase andkeep/return decisions in nested multinomial logit fashion. Our main finding is that the optimal assortmenthas a counterintuitive structure for relatively strict return policies: It is optimal to offer a mix of the mostpopular and most eccentric products when the refund amount is sufficiently low, which can be viewed asa form of risk sharing between the retailer and consumers. In contrast, if the refund is sufficiently high, orwhen returns are disallowed, optimal assortment is composed of only the most popular products (a commonfinding in the literature). We provide preliminary empirical evidence for one of the key drivers of our results:more eccentric products have higher probability of return conditional on purchase. In light of our analyticalfindings and managerial insights, we conclude that retailers should take their return policies into accountwhen merchandising.