964 resultados para Ebro river catchment
Resumo:
Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.
Resumo:
The Burnett River snapping turtle (Elseya sp.) from the Burnett, Mary and Fitzroy river systems is an undescribed Australian freshwater turtle, of which very little ecological information is known. This paper describes the dietary ecology of the species in the Burnett River catchment. Stomach and faecal samples were collected from turtles and an index of relative importance was used to rank food items found in stomach samples. This index indicated that algae and aquatic ribbon weed (Vallisneria) were the dominant food items consumed. No difference in diet was found between males and females. Although the sample size was small, diet appeared to vary slightly seasonally, with Elseya sp. selectively feeding on the flower buds of the Chinese elm tree (Celtis chinensis) and the seeds of the blackbean tree (Castanospermum australe) when these food items were seasonally available. Faecal samples suggest that the most ingested foods ( algae and aquatic ribbon weed) were also the most digestible. Although predominantly herbivorous, Elseya sp. was seen to eat carrion once in the wild.
Resumo:
Land use in the river catchments of tropical North Queensland appears to have increased the export of sediment and nutrients to the coast. Although evidence of harmful effect of sediment on coastal and riverine ecosystems is limited, there is a growing concern about its possible negative impacts. Sugarcane cultivation on the floodplains of the tropical North Queensland river catchments is thought to be an important source of excess sediment in the river drainage systems. Minimum-tillage, trash blanket harvesting has been shown to reduce erosion from sloping sugarcane fields, but in the strongly modified floodplain landscape other elements (e.g. drains, water furrows and headlands) could still be important sediment sources. The main objectives of this thesis are to quantify the amount of sediment coming from low-lying cane land and identify the important sediment sources in the landscape. The results of this thesis enable sugarcane farmers to take targeted measures for further reduction of the export of sediment and nutrients. Sediment budgets provide a useful approach to identify and quantify potential sediment sources. For this study a sediment budget is calculated for a part of the Ripple Creek catchment, which is a sub-catchment of the Lower Herbert River. The input of sediment from all potential sources in cane land and the storage of sediment within the catchment have been quantified and compared with the output of sediment from the catchment. Input from, and storage on headlands, main drains, minor drains and water furrows, was estimated from erosion pin and surface profile measurements. Input from forested upland, input from fields and the output at the outlet of the catchment was estimated with discharge data from gauged streams and flumes. Data for the sediment budget were collected during two ‘wet’-seasons: 1999-2000 and 2000-2001. The results of the sediment budget indicate that this tropical floodplain area is a net source of sediment. Plant cane fields, which do not have a protective trash cover, were the largest net source of sediment during the 1999-2000 season. Sediment input from water furrows was higher, but there was also considerable storage of sediment in this landscape element. Headlands tend to act as sinks. The source or sink function of drains is less clear, but seems to depend on their shape and vegetation cover. An important problem in this study is the high uncertainty in the estimates of the sediment budget components and is, for example, likely to be the cause of the imbalance in the sediment budget. High uncertainties have particularly affected the results from the 20002001 season. The main source of uncertainty is spatial variation in the erosion and deposition processes. Uncertainty has to be taken into consideration when interpreting the budget results. The observation of a floodplain as sediment source contradicts the general understanding that floodplains are areas of sediment storage within river catchments. A second objective of this thesis was therefore to provide an answer to the question: how can floodplains in the tropical North Queensland catchments can be a source of sediment? In geomorphic literature various factors have been pointed out, that could control floodplain erosion processes. However, their importance is not 'uniquely identified'. Among the most apparent factors are the stream power of the floodwater and the resistance of the floodplain surface both through its sedimentary composition and the vegetation cover. If the cultivated floodplains of the North Queensland catchments are considered in the light of these factors, there is a justified reason to expect them to be a sediment source. Cultivation has lowered the resistance of their surface; increased drainage has increased the drainage velocity and flood control structures have altered flooding patterns. For the Ripple Creek floodplain four qualitative scenarios have been developed that describe erosion and deposition under different flow conditions. Two of these scenarios were experienced during the budget study, involving runoff from local hillslopes and heavy rainfall, which caused floodplain erosion. In the longer term larger flood events, involving floodwater from the Herbert River, may lead to different erosion and deposition processes. The present study has shown that the tropical floodplain of the Herbert River catchment can be a source of sediment under particular flow conditions. It has also shown which elements in the sugarcane landscape are the most important sediment sources under these conditions. This understanding will enable sugarcane farmers to further reduce sediment export from cane land and prevent the negative impact this may have on the North Queensland coastal ecosystems.
Resumo:
The purpose of the project is to demonstrate how the restoration of riverine habitat and connectivity benefits native biodiversity and promote the importance of a healthy river system for native fish and the greater river catchment. The goal is to restore native fish populations to 60% of pre-European settlement levels and improve aquatic health within the Reach.
Resumo:
22 p.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.
Resumo:
The Council of Australian Governments (COAG) in 2003 gave in-principle approval to a best-practice report recommending a holistic approach to managing natural disasters in Australia incorporating a move from a traditional response-centric approach to a greater focus on mitigation, recovery and resilience with community well-being at the core. Since that time, there have been a range of complementary developments that have supported the COAG recommended approach. Developments have been administrative, legislative and technological, both, in reaction to the COAG initiative and resulting from regular natural disasters. This paper reviews the characteristics of the spatial data that is becoming increasingly available at Federal, state and regional jurisdictions with respect to their being fit for the purpose for disaster planning and mitigation and strengthening community resilience. In particular, Queensland foundation spatial data, which is increasingly accessible by the public under the provisions of the Right to Information Act 2009, Information Privacy Act 2009, and recent open data reform initiatives are evaluated. The Fitzroy River catchment and floodplain is used as a case study for the review undertaken. The catchment covers an area of 142,545 km2, the largest river catchment flowing to the eastern coast of Australia. The Fitzroy River basin experienced extensive flooding during the 2010–2011 Queensland floods. The basin is an area of important economic, environmental and heritage values and contains significant infrastructure critical for the mining and agricultural sectors, the two most important economic sectors for Queensland State. Consequently, the spatial datasets for this area play a critical role in disaster management and for protecting critical infrastructure essential for economic and community well-being. The foundation spatial datasets are assessed for disaster planning and mitigation purposes using data quality indicators such as resolution, accuracy, integrity, validity and audit trail.
Resumo:
Claims for mid-Holocene Aboriginal occupation at the shell matrix site of Wurdukanhan, Mornington Island, Gulf of Carpentaria, Australia, are reassessed through an analysis of the excavated assemblage coupled with new surveys and an extensive dating program. Memmott et al. (2006, pp. 38, 39) reported basal ages of c.5000–5500 years from Wurdukanhan as 'the oldest date yet obtained for any archaeological site on the coast of the southern Gulf of Carpentaria' and used these dates to argue for 'a relatively lengthy occupation since at least the mid-Holocene'. If substantiated, with the exception of western Torres Strait, these claims make Mornington Island the only offshore island used across northern Australia in the mid-Holocene where it is conventionally thought that Aboriginal people only (re)colonised islands after sea-level maximum was achieved after the mid-Holocene. Our analysis of Wurdukanhan demonstrates high shellfish taxa diversity, high rates of natural shell predation and high densities of foraminifera throughout the deposit demonstrating a natural origin for the assemblage. Results are considered in the context of other dated shell matrix sites in the area and a geomorphological model for landscape development of the Sandalwood River catchment.
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
This study examined whether element: Ca ratios within the otoliths of juvenile brown trout could provide accurate trace element signatures for specific natal tributaries, and attempted to match these to trace element natal signatures found within the otoliths of adult trout caught in the main stem rivers of the same catchment. The trace element signatures of juvenile trout otoliths were analysed from a sample of eight tributaries representing the main sub-catchments of the Motueka River catchment, New Zealand. Trace element signatures were determined using laser ablation inductively coupled plasma mass spectrometry, and differentiated using linear discriminant function analysis with an overall cross-validated classification success of 96.8%. Temporal stability in element: Ca ratios was investigated by repeat collections of juvenile fish over two years. Natal signatures from 11 of 23 adult trout sampled from the catchment main stems were matched to one of the eight tributary signatures showing recruitment sources to be spread relatively evenly throughout the catchment. This study demonstrates the potential of using otolith trace element analysis to determine the natal origins of freshwater fish within a catchment.
Resumo:
Understanding the life-history attributes of aquatic species is integral to the development of environmental-flow strategies in regulated river systems. This is particularly important when species are under continual and increasing pressure from water-resource development. In this study, the water temperature and flow requirements for spawning of the Fitzroy River golden perch (Macquaria ambigua oriens) were investigated over 4 years at 22 sites in the Fitzroy River catchment. Eggs, larvae and young-of-year (YOY) M. ambigua oriens were sampled on a variety of flow events to determine the environmental requirements for spawning. Eggs and larvae of M. ambigua oriens were detected during natural flow events generally with a minimum of 1.5 m river rise and duration of 7 days. Spawning was associated with the peak and/or recession of the first or second post-winter flow event where water temperatures exceeded 248 degrees C. Our data suggests that it is important to protect a range of flows, not just flood flows, as previously documented for this species. The interaction of spawning flows with existing and future water-resource development should be considered to ensure maintenance of the population viability of M. ambigua oriens.
Resumo:
421 p. (Bibliogr.: 375-421
Resumo:
O crescimento da população e dos núcleos urbanos durante o século XX, sobretudo nos países em desenvolvimento, contribuiu para o aumento das áreas impermeáveis das bacias hidrográficas, com impactos importantes nos sistemas de drenagem urbana e na ocorrência de enchentes associadas. As enchentes trazem prejuízos materiais, na saúde e sociais. Recentemente, têm sido propostas práticas conservacionistas e medidas compensatórias, que buscam contribuir para o controle das enchentes urbanas, através do retardo do pico e amortecimento dos hidrogramas. Modelos matemáticos hidrológicos-hidráulicos permitem a simulação da adoção destas medidas de controle, demonstrando e otimizando sua localização. Esta dissertação apresenta os resultados da aplicação do modelo hidrológico Storm Water Management Model (SWMM) à bacia hidrográfica de estudo e representativa do rio Morto localizada em área peri-urbana em Jacarepaguá na cidade do Rio de Janeiro, com área de 9,41 km. O processamento do modelo SWMM foi realizado com o apoio da interface Storm and Sanitary Analysis (SSA), integrada ao sistema AutoCAD Civil 3D. Além da verificação da adequabilidade do modelo à representação dos sistemas hidrológico e hidráulico na bacia, foram desenvolvidos estudos para dois cenários como medidas de controle de enchentes: cenário 1, envolvendo implantação de um reservatório de detenção e, cenário 2, considerando a implantação de reservatórios de águas pluviais nos lotes. Os hidrogramas resultantes foram comparados ao hidrograma resultante da simulação nas condições atuais. Além disso, foram avaliados os custos associados a cada um dos cenários usando o sistema de orçamento da Empresa Rio Águas da PCRJ. Nas simulações foram adotadas a base cartográfica, e os dados climatológicos e hidrológicos previamente observados no contexto do projeto HIDROCIDADES, Rede de Pesquisa BRUM/FINEP, na qual este estudo se insere. Foram representados os processos de geração e propagação do escoamento superficial e de base. Durante o processo de calibração, realizou-se a análise de sensibilidade dos parâmetros, resultando como parâmetros mais sensíveis os relativos às áreas impermeáveis, especialmente o percentual de área impermeável da bacia (Ai). A calibração foi realizada através do ajuste manual de sete parâmetros do escoamento superficial e cinco do escoamento de base para três eventos. Foram obtidos coeficientes de determinação entre 0,52 e 0,64, e a diferença entre os volumes escoados e observados entre 0,60% e 4,96%. Para a validação do modelo foi adotado um evento pluviométrico excepcional observado na cidade em abril de 2010, que à época causou enchentes e grandes transtornos na cidade. Neste caso, o coeficiente de determinação foi igual a 0,78 e a diferença entre volumes foi de 15%. As principais distorções entre hidrogramas observados e simulados foram verificados para as vazões máximas. Em ambos os cenários as enchentes foram controladas. A partir destes estudos, pôde-se concluir que o melhor custo-benefício foi o cenário 2. Para este cenário, foi observado maiores amortecimento e retardo da vazão de pico do hidrograma, igual a 21,51% da vazão simulada para as condições atuais da bacia. Os custos de implantação orçados para os reservatórios de lote ficaram 52% a menos do que o do reservatório de detenção.
Resumo:
Esta dissertação apresenta os resultados do estudo de monitoramento da qualidade de água na região hidrográfica da Baixada de Jacarepaguá através de coletas e posterior análise laboratorial realizadas na bacia hidrográfica experimental e representativa do Rio Morto. A bacia possui características predominantes peri-urbanas.