971 resultados para Earth-based plasters
Resumo:
The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE) using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids) of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.
Resumo:
In the context of globalized competition among territories, cities, regions and countries have to find new ways to be attractive to companies, investors, tourists and residents. In that perspective, major sports events (such as the Olympic Games or the FIFA World Cup) are often seen as a lever for territorial development. Based on that idea, many sports events hosting strategies have emerged in the 1980s and 1990s. However, the growing competition in the sports events' market and the gigantism of those major events, forced some territories to turn to smaller events. This necessary resize of their strategy raises the question of their capacity to meet the initial objectives, which aim usually at developing the economy and promoting the image of the host destination. This essay sketches out the evolution of a sports events hosting strategy in a city that does not have the resources (either financial, human or in terms of infrastructures) to attract major international sports events. The challenges they have to face and a possible solution based on the event portfolio perspective are discussed through the article.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
Recent Storms in Nordic countries were a reason of long power outages in huge territories. After these disasters distribution networks' operators faced with a problem how to provide adequate quality of supply in such situation. The decision of utilization cable lines rather than overhead lines were made, which brings new features to distribution networks. The main idea of this work is a complex analysis of medium voltage distribution networks with long cable lines. High value of cable’s specific capacitance and length of lines determine such problems as: high values of earth fault currents, excessive amount of reactive power flow from distribution to transmission network, possibility of a high voltage level at the receiving end of cable feeders. However the core tasks was to estimate functional ability of the earth fault protection and the possibility to utilize simplified formulas for operating setting calculations in this network. In order to provide justify solution or evaluation of mentioned above problems corresponding calculations were made and in order to analyze behavior of relay protection principles PSCAD model of the examined network have been created. Evaluation of the voltage rise in the end of a cable line have educed absence of a dangerous increase in a voltage level, while excessive value of reactive power can be a reason of final penalty according to the Finish regulations. It was proved and calculated that for this networks compensation of earth fault currents should be implemented. In PSCAD models of the electrical grid with isolated neutral, central compensation and hybrid compensation were created. For the network with hybrid compensation methodology which allows to select number and rated power of distributed arc suppression coils have been offered. Based on the obtained results from experiments it was determined that in order to guarantee selective and reliable operation of the relay protection should be utilized hybrid compensation with connection of high-ohmic resistor. Directional and admittance based relay protection were tested under these conditions and advantageous of the novel protection were revealed. However, for electrical grids with extensive cabling necessity of a complex approach to the relay protection were explained and illustrated. Thus, in order to organize reliable earth fault protection is recommended to utilize both intermittent and conventional relay protection with operational settings calculated by the use of simplified formulas.
Resumo:
Perovskite type piezoelectric and manganese oxide materials have gained a lot of attention in the field of device engineering. Lead zirconium titananium oxide (PbZri.iTiiOa or PZT) is a piezoelectric material widely used as sensors and actuators. Miniaturization of PZTbased devices will not only perfect many existing products, but also opens doors to new applications. Lanthanum manganese oxides Lai-iAiMnOa (A-divalent alkaline earth such as Sr, Ca or Ba) have been intensively studied for their colossal magnetoresistance (CMR) properties that make them applicable in memory cells, magnetic and pressure sensors. In this study, we fabricate PZT and LSMO(LCMO) heterostructures on SrTiOa substrates and investigate their temperature dependency of resistivity and magnetization as a function of the thickness of LSMO(LCMO) layer. The microstructure of the samples is analysed through TEM. In another set of samples, we study the effect of application of an electric field across the PZT layer that acts as an external pressure on the manganite layer. This verifies the correlation of lattice distortion with transport and magnetic properties of the CMR materials.
Resumo:
This research focuses on exploring the Anishinaabek/Ojibwe worldview founded upon the spiritual relationship with Mother Earth as the Anishinaabek view of peace to teach our well-being with earth. This research explores the experiences of four 21st century traditional Anishinaabek elders through describing their ways of knowing and of being as it relates to the Anishinaabek worldview of respect and peace with nature. This respect for Mother Earth and respecting earth’s way−akii-bimaadizi is articulated and shared regarding elders’ experiences of teaching our well-being with earth−Akinomaage mino akii-ayaa and is based upon Anishinaabek spirituality. This research details the Anishinaabek worldview from the elders’ shared experiences of earth as teacher and elder. Ten themes emerged from the data. These themes included (a) going back to our original gifts and instructions/building your sacred bundle/sharing your sacred bundle, (b) wisdom−nbwaakaawin: connecting the dots/original instructions/medicine−mshkiki/environmental consciousness, (c) sacred teachings/learning from the elders, (d) relationships/honoring elders/eldership, (e) political experiences and awareness, (f) a way of being in Anishinaabek research, (g) survival, (h) peace is our worldview demonstrated, (i) be aware of colonialistic thinking, (j) Akinomaage: earth as context. The researcher also shares her reflections as a researcher and as an Anishinaabekwe: Ojibwe woman.
Resumo:
Le Coran et la Sunna (la tradition du prophète Muḥammad) relatée dans les aḥâdîth (les traditions orales du Prophète) représentent la source éternelle d’inspiration et de savoir à laquelle les Musulmans se réfèrent pour agir, réagir et interagir. Par le fait même, tout au long de l’histoire musulmane, ces sources sacrées ont été à la base des relations des Musulmans avec autrui, incluant les Chrétiens. Les trois éléments majeurs de différenciation entre l’islam et le christianisme sont : la nature divine de Jésus, la trinité ainsi que la crucifixion et la mort de Jésus sur la croix. La position tranchée du Coran quant aux deux premiers points ne laisse place à aucun débat académique. Cependant, l’ambiguïté du texte coranique quant à la crucifixion de Jésus et sa mort a favorisé de nombreux débats entre mufassirûn (les exégètes du Coran). Cette thèse est une analyse textuelle des deux passages coraniques qui traitent de cette troisième différence. Pour cette étude textuelle et intertextuelle, les tafâsîr (interprétations du Coran) de huit mufassirûn appartenant à différentes madhâhib (écoles d’interprétation) et périodes de l’histoire des relations musulmanes-chrétiennes sont utilisés en combinaison avec certaines approches et méthodes récentes telles que : historico-critique et critique rédactionnelle. De plus, trois nouvelles théories développées dans la thèse enrichissent les outils herméneutiques de la recherche : la « théorie des cinq couches de sens », la « théorie des messages coraniques doubles » et la « théorie de la nature humaine tripartite ». À la lumière de ces théories et méthodes, il apparaît que l’ambiguïté coranique au sujet de la crucifixion et de la mort de Jésus est une invitation claire de la part du Coran incitant les Musulmans et les Chrétiens à vivre avec cette ambiguïté insoluble. La conclusion de cette thèse contribue directement à de meilleures relations musulmanes-chrétiennes, renforçant l’appel coranique (Coran 3:64, 103) à ces deux communautés leurs demandant de se cramponner aux points communs majeurs, d’intégrer leurs différences mineures et de consacrer leurs énergies pour une vie harmonieuse entre eux et laisser le reste dans les mains du Dieu qu’ils ont en commun.
Resumo:
Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.
Resumo:
The objective of the present work is to study the effect of rare-earth (RE) doping on the superconducting properties of (Bi,Pb)-2212 system and to develop novel superconductors in the system with improved properties, especially, the self- and in-field critical current densities so as to use them for practical applications. This dissertation describes a range of findings in Bi-based superconductor using the cationic substitution of rare earth (RE) elements. Most of the experiments reported here take advantage of the difference in the valency and ionic radii of dopant and doping site.
Resumo:
Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.
Resumo:
This thesis contains the author's work in preparing efficient EL phosphors, the details of fabrication of low voltage operated thin film EL (TFEL) devices and DC TFEL devices. Some of the important work presented here are related to the white light emitting ZnS:Cu,Pr,Cl phosphor which can be colour tuned by changing the excitation frequency, observation of energy transfer from Cu/Ag ions to rare earth ions in ZnS:(Cu/Ag), RE,Cl phosphors, development of TFEL device which can be operated below 50V, optimization of the device parameters for long life, high brightness in terms of the active and insulating layer thicknesses, observation of dependence of threshold voltage for the onset of emission on frequency of excitation when a novel dielectric Eu2O3 film was used as insulator and the devices with multicolor emission using ZnS doped with rare earth as active layer. Characterization based on other devices based on ZnS:Sm, ZnS:Pr, ZnS:Dy and their emission characteristics are also illustrated
Resumo:
The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.
Resumo:
Materials belonging to the family of manganites are technologically important since they exhibit colossal magneto resistance. A proper understanding of the transport properties is very vital in tailoring the properties. A heavy rare earth doped manganite like Gd0·7Sr0·3MnO3 is purported to be exhibiting unusual properties because of smaller ionic radius of Gd. Gd0·7Sr0·3MnO3 is prepared by a wet solid state reaction method. The conduction mechanism in such a compound has been elucidated by subjecting the material to low temperature d.c. conductivity measurement. It has been found that the low band width material follows a variable range hopping (VRH) model followed by a small polaron hopping (SPH) model. The results are presented here