962 resultados para Early Phase
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
PURPOSE: Juvenile idiopathic arthritis (JIA) has unknown etiology, and the involvement of the temporomandibular joint (TMJ) is rare in the early phase of the disease. The present article describes the use of computed tomography (CT) and magnetic resonance (MRI) images for the diagnosis of affected TMJ in JIA. CASE DESCRIPTION: A 12-year-old, female, Caucasian patient, with systemic rheumathoid arthritis and involvement of multiple joints was referred to the Imaging Center for TMJ assessment. The patient reported TMJ pain and limited opening of the mouth. The helical CT examination of the TMJ region showed asymmetric mandibular condyles, erosion of the right condyle and osteophyte-like formation. The MRI examination showed erosion of the right mandibular condyle, osteophytes, displacement without reduction and disruption of the articular disc. CONCLUSION: The disorders of the TMJ as a consequence of JIA must be carefully assessed by modern imaging methods such as CT and MRI. CT is very useful for the evaluation of discrete bone changes, which are not identified by conventional radiographs in the early phase of JIA. MRI allows the evaluation of soft tissues, the identification of acute articular inflammation and the differentiation between pannus and synovial hypertrophy.
Resumo:
PURPOSE: To evaluate the mitochondrial function of the remnant liver (RL) in the early phase of liver regeneration in rats after 70% partial hepatectomy (PH). METHODS: Sixty male Wistar rats (200-250g) submitted to 70% PH were divided into five groups according to the time of euthanasia and application or not of laser light: C = Control, time zero; 2 minutes, 4, 6 and 24 hours after PH. The dose of laser radiation was 22.5 J/cm², wavelength of 660 nm (visible/red), in the remnant liver. We studied the respiration activated by ADP (state 3), basal mitochondrial respiration (state 4), respiratory control ratio (RCR) and mitochondrial membrane potential (MMP). RESULTS: The mitochondrial function of RL changed at 4 and 6 hours after PH, with a significant increase in state 3 and a concomitant increase in state 4 and with maintenance of RCR. MMP differed significantly between the groups biostimulated with laser radiation and the control group 4 hours after HP, with a substantial reduction in the non-laser groups. CONCLUSION: The laser light at the dose used in this study did not induce additional damage to the RL and seems to have delayed the hepatocellular metabolic overload of the remnant liver.
Resumo:
The pivotal role of spleen CD4(+) T cells in the development of both malaria pathogenesis and protective immunity makes necessary a profound comprehension of the mechanisms involved in their activation and regulation during Plasmodium infection. Herein, we examined in detail the behaviour of non-conventional and conventional splenic CD4(+) T cells during P. chabaudi malaria. We took advantage of the fact that a great proportion of CD4(+) T cells generated in CD1d(-/-) mice are I-A(b)-restricted (conventional cells), while their counterparts in I-Ab(-/-) mice are restricted by CD1d and other class IB major histocompatibility complex (MHC) molecules (non-conventional cells). We found that conventional CD4(+) T cells are the main protagonists of the immune response to infection, which develops in two consecutive phases concomitant with acute and chronic parasitaemias. The early phase of the conventional CD4(+) T cell response is intense and short lasting, rapidly providing large amounts of proinflammatory cytokines and helping follicular and marginal zone B cells to secrete polyclonal immunoglobulin. Both TNF-alpha and IFN-gamma production depend mostly on conventional CD4(+) T cells. IFN-gamma is produced simultaneously by non-conventional and conventional CD4(+) T cells. The early phase of the response finishes after a week of infection, with the elimination of a large proportion of CD4(+) T cells, which then gives opportunity to the development of acquired immunity. Unexpectedly, the major contribution of CD1d-restricted CD4(+) T cells occurs at the beginning of the second phase of the response, but not earlier, helping both IFN-gamma and parasite-specific antibody production. We concluded that conventional CD4(+) T cells have a central role from the onset of P. chabaudi malaria, acting in parallel with non-conventional CD4(+) T cells as a link between innate and acquired immunity. This study contributes to the understanding of malaria immunology and opens a perspective for future studies designed to decipher the molecular mechanisms behind immune responses to Plasmodium infection.
Resumo:
Ide, BN, Leme, TCF, Lopes, CR, Moreira, A, Dechechi, CJ, Sarraipa, MF, da Mota, GR, Brenzikofer, R, and Macedo, DV. Time course of strength and power recovery after resistance training with different movement velocities. J Strength Cond Res 25(7): 2025-2033, 2011-The purpose of this study was to evaluate the time course of strength and power recovery after a single bout of strength training designed with fast and slow contraction velocities. Nineteen male subjects were randomly divided into 2 groups: the slow-velocity contraction (SV) group and the fast velocity contraction (FV) group. Resistance training protocols consisted of 5 sets of 12 repetition maximum (5 x 12RM) with 50 seconds of rest between sets and 2 minutes between exercises. Contraction velocity was controlled by the execution time for each repetition (SV-6 seconds to complete concentric and eccentric phases and for FV-1.5 seconds). Leg Press 45 degrees 1RM (LP 1RM), horizontal countermovement jump (HCMJ), and right thigh circumference (TC) were accessed in 6 distinct moments: base (1 week before exercise), 0 (immediately after exercises), 24, 48, 72, and 96 hours after exercise protocol. The SV and FV presented significant LP 1RM decrements at 0, and these were still evident 24-48 hours postexercise. The magnitude of decline was significantly (p<0.05) higher for FV. The SV and FV presented significant HCMJ decrements at 0, but only for FV were these still evident 24-72 hours postexercise. The SV and FV presented significant TC increments at 0, and these were still evident 24-48 hours postexercise for SV but for FV it continued up to 96 hours. The magnitude of increase was significantly (p<0.05) higher for FV. In conclusion, the fast contraction velocity protocol resulted in greater decreases in LP 1RM and HCMJ performance, when compared with slow velocity. The results lead us to interpret that this variable may exert direct influence on acute muscle strength and power generation capacity.
Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration
Resumo:
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Motor impairments of Parkinson`s disease (PD) appear only after the loss of more than 70% of the DAergic neurons of the substantia nigra pars compacta (SNc). An earlier phase of this disease can be modeled in rats that received a unilateral infusion of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) into the SNc. Though these animals do not present gross motor impairments, they rotate towards the lesioned side when challenged with DAergic drugs, like amphetamine and apomorphine. The present study aimed to test whether these effects occur because the drugs disrupt compensatory mechanisms that keep extracellular levels of dopamine in the striatum (DA(E)) unchanged. This hypothesis was tested by an in vivo microdialysis study in awake rats with two probes implanted in the right and left striatum. Undrugged rats did not present turning behaviour and their basal DA(E) did not differ between the lesioned and sham-lesioned sides. However, after apomorphine treatment, DA(E) decreased in both sides, but to a larger extent in the lesioned side at the time the animals started ipsiversive turning behaviour. After amphetamine challenge, DA(E) increased in both sides, becoming significantly higher in the non-lesioned side at the time the animals started ipsiversive turning behaviour. These results are in agreement with the hypothesis that absence of gross motor impairments in this rat model of early phase PD depends on maintenance of extracellular DA by mechanisms that may be disrupted by events demanding its alteration to higher or lower levels. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A history of agricultural production is proposed for Neolithic Catalhoyuk East, central Turkey, using archaeobotanical, environmental, population and settlement studies. In the aceramic early phase of site occupation, intensive strategies developed as changes in population and environment caused stress on food supplies produced within a limited territory. Food exchange may have been part of the social means by which Catalhoyuk and nearby contemporary settlements amalgamated into the single site of the main occupation phase. Population change, inherited territories and continuing environmental impact led to the development of an extensive system of agriculture using widely dispersed dry soils, with an intensive regime applied to nearby alluvial soils. Social tensions caused by the evolution of this system contributed to the fissioning of the site by the Chalcolithic.
Resumo:
Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-alpha, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-alpha, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-alpha, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Objective: Gorticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: One hundred twenty-eight BALB/c mice (20-25 g). Interventions: Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Gexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 mu g, ALIp) or intraperitoneally (125 mu g, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALlexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). Measurements and Main Results: At 24 hrs, lung state elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interieukin-6, and transforming growth factor (TGF)-beta levels in bronchoatveolar lavage fluid, as well as tumor necrosis factor (TNF)-alpha, migration inhibitory factor (MIF), interferon (IFN)-gamma, TGF-beta 1 and TGF-beta 2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-alpha, MIF, IFN gamma, and TGF-beta 2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. Conclusions. Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.
Resumo:
We tested the hypothesis that at the early phase of acute lung injury (ALI) the degree of endothelium injury may predict lung parenchyma remodelling For this purpose, two models of extrapulmonary ALI induced by Escherichia col: lipopolysaccharide (ALI-LPS) or cecal ligation and puncture (ALI-CLP) were developed in mice At day 1, these models had similar degrees of lung mechanical compromise, epithelial damage, and intraperitoneal inflammation, but endothelial lesion was greater in ALI-CLP A time course analysis revealed, at day 7 ALI-CLP had higher degrees of epithelial lesion, denudation of basement membrane, endothelial damage, elastic and collagen fibre content, neutrophils in bronchoalveolar lavage fluid (BALF), peritoneal fluid and blood, levels of interleukin-6, KC (murine analogue of IL-8), and transforming growth factor-beta in BALF Conversely, the number of lung apoptotic cells was similar in both groups In conclusion, the intensity of fibroelastogenesis was affected by endothelium injury in addition to the maintenance of epithelial damage and intraperitoneal inflammation. (C) 2010 Elsevier B V All rights reserved
Resumo:
Background and purpose: Protein kinase (PK) A and the epsilon isoform of PKC (PKC epsilon) are involved in the development of hypernociception (increased sensitivity to noxious or innocuous stimuli) in several animal models of acute and persistent inflammatory pain. The present study evaluated the contribution of PKA and PKC epsilon to the development of prostaglandin E(2) (PGE(2))-induced mechanical hypernociception. Experimental approach: Prostaglandin E(2)-induced mechanical hypernociception was assessed by constant pressure rat paw test. The activation of PKA or PKC epsilon was evaluated by radioactive enzymic assay in the dorsal root ganglia (DRG) of sensory neurons from the hind paws. Key results: Hypernociception induced by PGE(2) (100 ng) by intraplantar (i.pl.) injection, was reduced by i.pl. treatment with inhibitors of PKA [A-kinase-anchoring protein St-Ht31 inhibitor peptide (AKAPI)], PKC epsilon (PKC epsilon I) or adenylyl cyclase. PKA activity was essential in the early phase of the induction of hypernociception, whereas PKC activity was involved in the maintenance of the later phase of hypernociception. In the DRG (L4-L5), activity of PKA increased at 30 min after injection of PGE(2) but PKC activity increased only after 180 min. Moreover, i.pl. injection of the catalytic subunit of PKA induced hypernociception which was markedly reduced by pretreatment with an inhibitor of PKC epsilon, while the hypernociception induced by paw injection of PKC epsilon agonist was not affected by an inhibitor of PKA (AKAPI). Conclusions and implications: Taken together, these findings are consistent with the suggestion that PKA activates PKC epsilon, which is a novel mechanism of interaction between these kinases during the development of PGE(2)-induced mechanical hypernociception.
Resumo:
BACKGROUND Long-term ethanol intake has been reported to evoke both hypertension and increase of systemic vasopressin levels in rats. METHODS In this work, we investigated the involvement of systemic vasopressin in the hypertension evoked in rats by long-term ethanol (20% vol/vol) intake for 2 weeks, by systemic treatment with the VI-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg). Moreover, plasma arginine-vasopressin (AVP) content was quantified using an AVP radioimmunoassay and the expression of vasopressin mRNA in the supraoptic (SON) and paraventricular (PVN) nuclei was measured using real-time PCR. RESULTS Mild hypertension was observed after 2 weeks of ethanol treatment when compared with control animals. Moreover, an increase in both the expression of vasopressin mRNA and the vasopressin blood content was observed in ethanol-treated rats in comparison to the OF control group. Basal blood pressure levels of ethanol-treated animals were significantly reduced by IV treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVR However, dTyr(CH2)5(Me) AVP had no effect on the blood pressure of control animals. CONCLUSIONS The results indicate that mild hypertension is already observed at an early phase of ethanol consumption in rats. Because the content of circulating vasopressin was increased in ethanol-treated rats and their basal blood pressure returned to control levels after IV treatment with a VI-vasopressin receptor antagonist, it is proposed that increased circulating vasopressin content may mediate the hypertension observed in ethanol-treated rats.
Resumo:
Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min. sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVP(P)) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVP(P) at all time points, except 24 h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVP(P) remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
In a previous study, we concluded that overproduction of nitric oxide (NO) by inducible nitric Oxide synthase (iNOS) in the late phase of sepsis prevents hypothalamic activation, blunts vasopressin secretion and contributes to hypotension, irreversible shock and death. The aim of this follow-up study was to evaluate if the same neuronal activation pattern happens in brain structures related to cardiovascular functions. Male Wistar rats received intraperitoneal injections of aminoguanidine, an iNOS inhibitor, or saline 30 min before cecal ligation and puncture (CLP) or sham surgeries. The animals were perfused 6 or 24 h after the surgeries and the brains were removed and processed for Fos immunocytochemistry We observed an increase (P < 0.001) in c-fos expression 6 h after CLP in the area postrema (AP), nucleus of he tractus solitarius (NTS), ventral lateral medulla (VLM), locus coeruleus (LC) and parabrachial nucleus (PB). At 24 h after CLP, however, c-fos expression was strongly decreased in all these nuclei (P < 0.05), except for the VLM. Aminoguanidine reduced c-fos expression in the AP and NTS at 6 h after CLR but showed an opposite effect at 24 h, with an increase in the AP, NTS, and also in the VLM. No such effect was observed in the LC and PB at 6 or 24 h. In all control animals, c-fos expression was minimal or absent. We conclude that in the early phase of sepsis iNOS-derived NO may be partially responsible for the activation of brain structures related to cardiovascular regulation. During the late phase, however, this activation is reduced or abolished. (C) 2009 Elsevier Ireland Ltd. All rights reserved.