899 resultados para EXTREME-ULTRAVIOLET
Resumo:
Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high harmonic radiation, and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft X-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.
Resumo:
Spectroscopic measurements of NOAA AR 10871, obtained with the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument on 2006 April 12, reveal velocity oscillations in the He II 303.8 angstrom emission line formed at T approximate to 5; 10(4) K. The oscillations appear to arise in a bright active region loop arcade about 25 '' wide which crosses the EUNIS slit. The period of these transition region oscillations is 26 +/- 4 s, coupled with a velocity amplitude of +/- 10 km s(-1), detected over four complete cycles. Similar oscillations are observed in lines formed at temperatures up to T approximate to 4; 10(5) K, but we find no evidence for the coupling of these velocity oscillations with corresponding phenomena in the corona. We interpret the detected oscillations as originating from an almost purely adiabatic plasma, and infer that they are generated by the resonant transmission of MHD waves through the lower active region atmospheres. Through the use of seismological techniques, we establish that the observed velocity oscillations display wave properties most characteristic of fast body global sausage modes.
Resumo:
A detailed study is presented of the decaying solar-active region NOAA 10103 observed with the Coronal Diagnostic Spectrometer (CDS), the Michelson Doppler Imager (MDI) and the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Electron-density maps formed using Si x (356.03 angstrom/347.41 angstrom) show that the density varies from similar to 10(10) cm(-3) in the active-region core to similar to 7 x 108 cm-3 at the region boundaries. Over the 5 d of observations, the average electron density fell by similar to 30 per cent. Temperature maps formed using Fe XVI (335.41 angstrom)/Fe XIV (334.18 angstrom) show electron temperatures of similar to 2.34 x 10(6) K in the active-region core and similar to 2.10 x 10(6) K at the region boundaries. Similarly to the electron density, there was a small decrease in the average electron temperature over the 5-d period. The radiative, conductive and mass-flow losses were calculated and used to determine the resultant heating rate (P-H). Radiative losses were found to dominate the active-region cooling process. As the region decayed, the heating rate decreased by almost a factor of 5 between the first and last day of observations. The heating rate was then compared to the total unsigned magnetic flux (Phi(tot) = integral dA vertical bar B-z vertical bar), yielding a power law of the form P-H similar to Phi(0.81 +/- 0.32)(tot) This result suggests that waves rather than nanoflares may be the dominant heating mechanism in this active region.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
Laser-driven coherent extreme-ultraviolet (XUV) sources provide pulses lasting a few hundred attoseconds(1,2), enabling real-time access to dynamic changes of the electronic structure of matter(3,4), the fastest processes outside the atomic nucleus. These pulses, however, are typically rather weak. Exploiting the ultrahigh brilliance of accelerator-based XUV sources(5) and the unique time structure of their laser-based counterparts would open intriguing opportunities in ultrafast X-ray and high-field science, extending powerful nonlinear optical and pump-probe techniques towards X-ray frequencies, and paving the way towards unequalled radiation intensities. Relativistic laser-plasma interactions have been identified as a promising approach to achieve this goal(6-13). Recent experiments confirmed that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with unparalleled efficiency, and demonstrated the scalability of the generation technique towards hard X-rays(14-19). Here we show that the phases of the XUV harmonics emanating from the interaction processes are synchronized, and therefore enable attosecond temporal bunching. Along with the previous findings concerning energy conversion and recent advances in high-power laser technology, our experiment demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond.
Resumo:
Theoretical emission-line ratios involving Fe xi transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross-sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A) and first-order observations (similar to 235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe xi are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density (N-e) diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe xi electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N-e = 108 and 1011 cm-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N-e = 108 and 1011 cm-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe x 174.52 A feature, unless the first-order instrument response is enhanced.
Resumo:
The characteristics of an extreme-ultraviolet (XUV) continuum light source and its application to a dual-laser plasma (DLP) photoabsorption experiment are described. The continuum emitting plasma was formed by focusing a 7 ps, 248 nm, 15 mJ laser pulse onto a number of selected targets known to be good XUV continuum emitters (Sm, W, Au and Pb), while the second absorbing plasma was produced by a 15 ns, 1064 nm, 300 mi pulse. The duration of the continuum emission for these plasmas has a mean value of similar to 150 ps, but depends on both the target material and the picosecond laser pulse energy. Using this picosecond DLP set-up we have been able to measure the photoabsorption spectrum of an actinide ion (thorium) for the first time.
Resumo:
Amplification of spontaneous emission (ASE) at 23.6 nm has been studied in a Ge plasma heated by a 1 TW infrared laser pulse. The exponent of the axial gain reached 21 in a geometry with Fresnel number less-than-or-equal-to 1. Two plasma columns of combined length up to 36 mm were used with an extreme ultraviolet mirror giving double-pass amplification. Saturation of the ASE output was observed. The beam divergence was about 8 x diffraction limited with a brightness estimated at 10(14) W cm-2 sr-1. The feedback from the mirror was significantly reduced probably by radiation damage from the plasma.
Resumo:
We made numerical simulations of the generation of narrowband beams of extreme ultraviolet radiation from intense laser interaction with a blazed grating surface. Strong fifth harmonic emission into its blazed diffraction order was observed as well as heavy suppression of the fundamental frequency with comparison to a typical harmonic spectrum from a flat target. The results demonstrate a new highly efficient method of generating near-monochromatic harmonics from the fundamental with minimal effect on the pulse duration. (C) 2011 Optical Society of America
Resumo:
The generation of high harmonics from solid-density plasmas promises the production of attosecond (as) pulses orders of magnitude brighter than those from conventional rare gas sources. However, while spatial and spectral emission of surface harmonics has been characterized in detail in many experiments proof that the harmonic emission is indeed phase locked and thus bunched in as-pulses has only been delivered recently (Nomura et al 2009 Nat. Phys. 5 124-8). In this paper, we discuss the experimental setup of our extreme ultraviolet (XUV) autocorrelation (AC) device in detail and show the first two-photon ionization and subsequent AC experiment using solid target harmonics. In addition, we describe a simple analytical model to estimate the chirp between the individual generated harmonics in the sub- and mildly relativistic regime and validate it using particle-in-cell (PIC) simulations. Finally, we propose several methods applicable to surface harmonics to extend the temporal pulse characterization to higher photon energies and for the reconstruction of the spectral phase between the individual harmonics. The experiments described in this paper prove unambiguously that harmonic emission from solid-density plasmas indeed occurs as a train of sub- femtosecond pulses and thus fulfills the most important property for a next-generation as-pulse source of unprecedented brightness.
Resumo:
Harmonic generation from relativistically oscillating plasma surfaces formed during the interaction of high contrast lasers with solid-density targets has been shown to be an efficient source of extreme ultraviolet (XUV) and X-ray radiation. Recent work has demonstrated that the exceptional coherence properties of the driving laser can be mirrored in the emitted radiation, permitting diffraction limited performance and attosecond phase locking of the harmonic radiation. These unique properties may allow the coherent harmonic focusing (CHF) of high harmonics generated from solid density targets to intensities on the order of the Schwinger limit of 10(29) W cm(-2) with laser systems available in the near future [Phys. Rev. Lett. 93, 115002 (2004)] and thus pave the way for unique experiments exploring the nonlinear properties of vacuum on ultra-fast timescales. In this paper we investigate experimentally as well as numerically the prospect of focusing high harmonics under realistic experimental conditions and demonstrate, using particle in cell (PIC) simulations, that precise control of the wavefronts and thus the focusability of the generated harmonics is possible with pre-shaped targets.
Resumo:
Coherent wake emission is a unique source of extreme ultraviolet radiation and has been recently shown to provide the basis for intense attosecond light. Here we present a novel scheme, supported by particle-in-cell simulations, demonstrating that enhancement and spectral control of the coherent wake emission signal can be achieved by modifying the interaction plasma density ramp. Significant tunable enhancement of harmonic emission is verified experimentally, with factors of > 50 in relative signal increase achieved in a narrow band of harmonics at the cutoff frequency.
Resumo:
K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.
Resumo:
We present images of the source of extreme ultraviolet (XUV) harmonic emission at a wavelength of 220 Angstrom from the interaction of a 20 TW, 1.053 mu m Nd:glass laser beam focused to intensities up to 4x10(18) W cm(-2) onto a solid target. From these measurements we determine an upper limit to the source size and brightness of the harmonic emission to show its efficacy as a novel source of short-pulse, coherent XUV radiation. We also demonstrate the empirical scaling of the harmonic generation efficiency with irradiance up to 10(19) W mu m(2) cm(-2), and extrapolate to estimate the possible source brightness at higher irradiances. These source brightnesses are compared to those available from an x-ray laser system. (C) 1997 American Institute of Physics.
Resumo:
Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser-solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations-the relativistically oscillating mirror mechanism(1-6). Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma-vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission(7,8) (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE-a slow decay of intensity, I, with high-harmonic order, n, as I(n) proportional to n(-1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how dense nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses(7,8) and offers a new window on understanding ultrafast energy coupling during intense laser-solid density interactions.