905 resultados para EVENT-RELATED FMRI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reports on left-lateralized abnormalities of component P300 of event-related brain potentials (ERP) in schizophrenics typically did not vary task difficulties. We collected 16-channel ERP in 13 chronic, medicated schizophrenics (25±4.9 years) and 13 matched controls in a visual P300 paradigm with targets defined by one or two stimulus dimensions (C1: color; C2: color and tilt); subjects key-pressed to targets. The mean target-ERP map landscapes were assessed numerically by the locations of the positive and negative map-area centroids. The centroids' time-space trajectories were searched for the P300 microstate landscape defined by the positive centroid posterior of the negative centroid. At P300 microstate centre latencies in C1, patients' maps tended to a right shift of the positive centroid (p<0.10); in C2 the anterior centroid was more posterior (p<0.07) and the posterior (positive) centroid more anterior (p<0.03), but without leftright difference. Duration of P300 microstate in C2 was shorter in patients (232 vs 347 ms;p<0.03) and the latency of maximal strength of P300 microstate increased significantly in patients (C1: 459 vs 376 ms; C2: 585 vs 525 ms). In summary only the one-dimensional task C1 supported left-sided abnormalities; the two-dimensional task C2 produced abnormal P300 microstate map landscapes in schizophrenics, but no abnormal lateralization. Thus, information processing involved clearly aberrant neural populations in schizophrenics, different when processing one and two stimulus dimensions. The lack of lateralization in the two-dimensional task supported the view that left-temporal abnormality in schizophrenics is only one of several task-dependent aberrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study shows that different neural activity during mental imagery and abstract mentation can be assigned to well-defined steps of the brain's information-processing. During randomized visual presentation of single, imagery-type and abstract-type words, 27 channel event-related potential (ERP) field maps were obtained from 25 subjects (sequence-divided into a first and second group for statistics). The brain field map series showed a sequence of typical map configurations that were quasi-stable for brief time periods (microstates). The microstates were concatenated by rapid map changes. As different map configurations must result from different spatial patterns of neural activity, each microstate represents different active neural networks. Accordingly, microstates are assumed to correspond to discrete steps of information-processing. Comparing microstate topographies (using centroids) between imagery- and abstract-type words, significantly different microstates were found in both subject groups at 286–354 ms where imagery-type words were more right-lateralized than abstract-type words, and at 550–606 ms and 606–666 ms where anterior-posterior differences occurred. We conclude that language-processing consists of several, well-defined steps and that the brain-states incorporating those steps are altered by the stimuli's capacities to generate mental imagery or abstract mentation in a state-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two most frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas were extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. — Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondemented Parkinson’s disease (PD) patients showed increased amplitude of event-related potential component P3. We recorded 18-channel spontaneous eyes-closed resting EEG and auditory oddball event-related potentials in 29 PD patients and 11 age-matched controls. Combining Mini-Mental State Examination score and oddball P3 counting performance, 15 patients were intellectually normal, 7 moderately, and 7 severely demented. P3 and N1 amplitude and latency, mean amplitude of 1,024 ms post-stimulus (separate after rare and after frequent stimuli), and resting EEG total power for 40 s were computed, and linearly regressed for age, sex, and L-dopa dosage. In nondemented PD patients, increased P3 amplitude was confirmed, but N1 amplitude and mean amplitude after rare and frequent stimuli were also increased as well as – most important – resting EEG total power. With increasing dementia, amplitude and power decreased, and P3 latency increased. Task demands cannot explain increased P3 amplitude, since similarly increased EEG total power was found during no-task resting. Prospective studies must determine whether P3 amplitude and EEG power in nondemented PD patients can serve as predictors of dementia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated extraversion-related individual differences in visual short-term memory (VSTM) functioning. Event related potentials were recorded from 50 introverts and 50 extraverts while they performed a VSTM task based on a color-change detection paradigm with three different set sizes. Although introverts and extraverts showed almost identical hit rates and reaction times, introverts displayed larger N1 amplitudes than extraverts independent of color change or set size. Extraverts also showed larger P3 amplitudes compared to introverts when there was a color change, whereas no extraversion-related difference in P3 amplitude was found in the no-change condition. Our findings provided the first experimental evidence that introverts' greater reactivity to punctuate physical stimulation, as indicated by larger N1 amplitude, also holds for complex visual stimulus patterns. Furthermore, P3 amplitude in the change condition was larger for extraverts than introverts suggesting higher sensitivity to context change. Finally, there were no extraversion-related differences in P3 amplitude dependent on set size. This latter finding does not support the resource allocation explanation as a source of differences between introverts and extraverts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvements in neuroimaging methods have afforded significant advances in our knowledge of the cognitive and neural foundations of aesthetic appreciation. We used magnetoencephalography (MEG) to register brain activity while participants decided about the beauty of visual stimuli. The data were analyzed with event-related field (ERF) and Time-Frequency (TF) procedures. ERFs revealed no significant differences between brain activity related with stimuli rated as “beautiful” and “not beautiful.” TF analysis showed clear differences between both conditions 400 ms after stimulus onset. Oscillatory power was greater for stimuli rated as “beautiful” than those regarded as “not beautiful” in the four frequency bands (theta, alpha, beta, and gamma). These results are interpreted in the frame of synchronization studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existe un interés considerable en hallar métodos que nos ayuden a saber cuándo una persona miente y cuándo dice la verdad desde un punto de vista forense. Actualmente, una de las líneas de investigación se inclina hacia el uso de potenciales relacionados con eventos. Se pretende hacer una revisión de los artículos que estudian estos procedimientos mediante distintos métodos: propiedades, fiabilidad, validez y limitaciones. Los resultados indican tasas de acierto en la discriminación de culpables en un rango de 7 al 100 por ciento, y en la de inocentes de 31 a 100 por ciento. La gran variabilidad y la posibilidad de “falsear” las respuestas llevan a cuestionar la inexactitud utilizada en algunos círculos mediáticos respecto a las cualidades y finalidades de dicha prueba. Se concluye la necesidad de profundizar más la posibilidad de que esta prueba sea utilizada con fines forenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ‘sense of self’ is essentially the ability to distinguish between self-generated and external stimuli. It consists of at least two very basic senses: a sense of agency and a sense of ownership. Disturbances seem to provide a basic deficit in many psychiatric diseases. The aim of our study was to manipulate those qualities separately in 28 patients with schizophrenia (14 auditory hallucinators and 14 non-hallucinators) and 28 healthy controls (HC) and to investigate the effects on the topographies and the power of the event-related potential (ERP). We performed a 76-channel EEG while the participants performed the task as in our previous paper. We computed ERPs and difference maps for the conditions and compared the amount of agency and ownership between the HC and the patients. Furthermore, we compared the global field power and the topographies of these effects. Our data showed effects of agency and ownership in the healthy controls and the hallucinator group and to a lesser degree in the non-hallucinator group. We found a reduction of the N100 during the presence of agency, and a bilateral temporal negativity related to the presence of ownership. For the agency effects, we found significant differences between HC and the patients. Contrary to the expectations, our findings were more pronounced in non-hallucinators, suggesting a more profoundly disturbed sense of agency compared to hallucinators. A contemporary increase of global field power in both patient groups indicates a compensatory recruitment of other mechanisms not normally associated with the processing of agency and ownership.