976 resultados para ESCHERICHIA-COLI-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: O Cell Fusing Agent Vírus (CFAV), considerado como o primeiro “flavivírus específicos de insectos” (ISF), parece estar exclusivamente adaptado aos seus hospedeiros, não replicando em células de vertebrados. Apesar de ter sido identificado há mais de três décadas (1975), a verdade é que muito pouco se conhece sobre a sua biologia. Dado o seu parentesco filogenético com alguns outros flavivírus encontrados naturalmente em mosquitos de diferentes géneros colhidos em diferentes regiões do globo, este vírus poderá ser usado como modelo para o estudo de ISF. No entanto, necessitam do desenvolvimento de ferramentas básicas, tais como clones moleculares ou baterias de soros contendo anticorpos que reconheçam uma ou mais proteínas codificadas pelo genoma viral, produzidas, por exemplo, a partir de antigénios virais produzidos de forma recombinante. Com este trabalho pretendeu-se a optimização de protocolos que permitiram a expressão e purificação parcial de quatro proteínas [duas proteínas estruturais (C e E) e duas não estruturais (NS3hel e NS5B)] do CFAV em E. coli, todas elas produzidas como proteínas de fusão com “caudas” (tags) de hexahistidina nos seus extremos carboxilo. Para a expansão do CFAV foram utilizadas células Aedes albopictus (C6/36). Após a realização da extracção do RNA viral e a obtenção de cDNA, procedeu-se amplificação, por RT-PCR, das regiões codificantes das proteínas C, E, NS3hel e NS5B, utilizando primers específicos. Os quatro fragmentos de DNA foram independentemente inseridos no vector pJTE1.2/blunt usando E. coli NovaBlue como hospedeira de clonagem e, posteriormente, inseridos em vectores de expressão pET-28b e pET-29b usando E. coli BL21(DE3)pLysS e Rosetta(DE3)pLysS como hospedeiras de expressão. Após da indução, expressão e purificação das proteínas recombinantes C, E, NS3hel e NS5B, foi confirmada a autenticidade destas proteínas produzidas através do método Western Blot com um anticorpo anti-histidina. --------- ABSTRACT: The Cell Fusing Agent virus (CFAV) considered as the first "insect- specific flavivirus" (ISF) and seems to be uniquely adapted to their hosts, not replicating in vertebrate cells. Although it has been known for more than three decades (1975), the truth is very little is known about its biology. Given its close phylogenetic relationship with other flavivirus naturally circulating in various genera of mosquitoes collected from different regions of the globe, this virus could be used as a model for the study of ISF. However, such studies require the development of experimental basic tools, such as molecular clones or serum batteries containing antibodies that recognize one or more proteins encoded by the viral genome, produced, for example, from viral antigens recombinant produced. In this work, we carried out the optimization of protocols that allowed the expression and partial purification of four proteins [two structural proteins (C and E) and two nonstructural proteins (NS3hel and NS5B)] CFAV in E. coli as fusion protein for c-terminal hexahistidine tags. For the expansion of the CFAV we used Aedes albopictus (C6/36) cells. After completion of the viral RNA extraction and cDNA obtained, amplification of the coding regions of the C, E, NS5B and NS3hel proteins was carried out by RT-PCR using specific primers. The four DNA fragments were independently inserted into the vector pJTE1.2/blunt using E. coli NovaBlue as cloning host and then inserted into expression vectors pET-28b and pET-29b using E. coli BL21(DE3)pLysS and Rosetta(DE3)pLysS as expression host. After induction, expression and purification of recombinant C, E, NS3hel and NS5B proteins Western Blot analyses with an anti-histidine antibody confirmed the authenticity of these proteins produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enteropathogenic E. coli (EPEC) infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA) also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P fimbriae are proteinaceous appendages on the surface of Escherichia coli bacteria that mediate adherence to uroepithelial cells. E. coli that express P fimbriae account for the majority of ascending urinary tract infections in women with normal urinary tracts. The hypothesis that P fimbriae on uropathic E. coli attach to renal epithelia and may regulate the immune response to establish infection was investigated. The polymeric Ig receptor (pIgR), produced by renal epithelia, transports IgA into the urinary space. Kidney pIgR and urine IgA levels were analyzed in a mouse model of ascending pyelonephritis, using E. coli with (P+) and without (P-) P fimbriae, to determine whether P(+) E. coli regulate epithelial pIgR expression and IgA transport into the urine. (P+) E. coli establish infection and persist to a greater amount than P(-) E. coli. P(+)-infected mice downregulate pIgR mRNA and protein levels compared with P(-)-infected or PBS controls at > or =48 h. The decrease in pIgR was associated with decreased urinary IgA levels in the P(+)-infected group at 48 h. pIgR mRNA and protein also decline in P(+) E. coli-infected LPS-hyporesponsive mice. These studies identify a novel virulence mechanism of E. coli that express P fimbriae. It is proposed that P fimbriae decrease pIgR expression in the kidney and consequently decrease IgA transport into the urinary space. This may explain, in part, how E. coli that bear P fimbriae exploit the immune system of human hosts to establish ascending pyelonephritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of 126 infants under 2 years, enrolled in a study on the etiology of acute diarrhea in Recife, Brazil, we selected 37 from whom no recognized enteropathogens, except classic enteropathogenic Escherichia coli, were identified. For comparison, we also examined 37 matched-control infants without diarrhea seen at the same hospital setting. This paper had the purpose to determine the prevalence of localized, diffuse, and aggregative-adhering E. coli strains in both groups. Three to five fecal E. coli colonies, of each case and control, were tested individually for adherence to HeLa cells by using the one step 3-h incubation assay. Strains of E. coli showing localized adherence were found significantly more often in patients (37.8%) than in controls (13.5%), p < 0.02, and they were pratically confined to EPEC serovars 055:H-, 0111:H2, and 119:H6. In contrast, E. coli isolates exhibiting the diffuse or aggregative patterns of adherence were restricted to non-EPEC serogroups and were more frequently encountred among controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell surfaces of five enteropathogenic Escherichia coli serotypes (O111:H2; O111:H12; O125:H9; O119:H6; O26:H11) were assayed by chemical methods, lectin agglutination tests and spectroscopy associated to transmission electron microscopy. Results of lectin agglutination assays showed that all strains reacted with mannosebinding lectins. Strains belonging to serotype O125:H9 also agglutinated with lectins which recognize galactose and Nacetylgalactosamine residues. The bacterial cells were treated with 0.01M phosphate buffered saline (pH 7.0) at 100oC for 2 hr and the extracts were submitted to precipitation and fractionated by Cetavlon. Phosphate, total sugar and protein contents were determined. Gas liquid chomatography-mass spectrometry analysis of alditol acetates showed the presence of galactose, mannose, fucose, glucose and traces of ribose. Spectroscopic analysis of intact cells showed the presence of a capsule-like structure which was not totally preserved after extraction. Some cells were still surrounded by an amorphous capsular-like material after polysaccharide extraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic and phenotypic virulence markers of different categories of diarrhoeagenic Escherichia coli were investigated in 106 strains of enteropathogenic E. coli (EPEC) serogroup O86. The most frequent serotype found was O86:H34 (86%). Strains of this serotype and the non motile ones behaved as EPEC i.e., carried eae, bfpA and EAF DNA sequences and presented localised adherence to HeLa cells. Serotypes O86:H2, O86:H6, O86:H10, O86:H18, O86:H27 and O86:H non determined, belonged to other categories. The majority of the strains of serotype O86:H34 and non motile strains produced cytolethal-distending toxin (CDT). The ribotyping analysis showed a correlation among ribotypes, virulence markers and serotypes, thus suggesting that CDT production might be a property associated with a universal clone represented by the O86:H34 serotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enteroinvasive Escherichia coli (EIEC) and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i) bacterial escape from macrophages after phagocytosis, (ii) macrophage death induced by EIEC and S. flexneri, (iii) macrophage cytokine expression in response to infection and (iv) expression of plasmidial (pINV) virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical and atypical enteropathogenic Escherichia coli (EPEC) are considered important bacterial causes of diarrhoea. Considering the repertoire of virulence genes, atypical EPEC (aEPEC) is a heterogeneous group, harbouring genes that are found in other diarrheagenic E. coli pathotypes, such as those encoding haemolysins. Haemolysins are cytolytic toxins that lyse host cells disrupting the function of the plasma membrane. In addition, these cytolysins mediate a connection to vascular tissue and/or blood components, such as plasma and cellular fibronectin. Therefore, we investigated the haemolytic activity of 72 aEPEC isolates and determined the correlation of this phenotype with the presence of genes encoding enterohaemolysins (Ehly) and cytolysin A (ClyA). In addition, the correlation between the expression of haemolysins and the ability of these secreted proteins to adhere to extracellular matrix (ECM) components was also assessed in this study. Our findings demonstrate that a subset of aEPEC presents haemolytic activity due to the expression of Ehlys and/or ClyA and that this activity is closely related to the ability of these isolates to bind to ECM components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a multifunctional protein with defined functions in numerous mammalian cellular processes. GAPDH functional diversity depends on various factors such as covalent modifications, subcellular localization, oligomeric state and intracellular concentration of substrates or ligands, as well as protein-protein interactions. In bacteria, alternative GAPDH functions have been associated with its extracellular location in pathogens or probiotics. In this study, new intracellular functions of E. coli GAPDH were investigated following a proteomic approach aimed at identifying interacting partners using in vivo formaldehyde cross-linking followed by mass spectrometry. The identified proteins were involved in metabolic processes, protein synthesis and folding or DNA repair. Some interacting proteins were also identified in immunopurification experiments in the absence of cross-linking. Pull-down experiments and overlay immunoblotting were performed to further characterize the interaction with phosphoglycolate phosphatase (Gph). This enzyme is involved in the metabolism of 2-phosphoglycolate formed in the DNA repair of 3"-phosphoglycolate ends generated by bleomycin damage. We show that interaction between Gph and GAPDH increases in cells challenged with bleomycin, suggesting involvement of GAPDH in cellular processes linked to DNA repair mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QSAR studies based on flow microcalorimetric bioassay data for interaction of homologous series of m-alkoxyphenols and p-hydroxybenzoates with E. coli cells were carried out applying factorial design. Results for both series showed a linear relationship between log(dose)max and log Po/w. Analysis of these data allows the identification of contributions toward the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2. These results are discussed with respect to drug quantitative structure-relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the bactericidal activity of titanium dioxide photocatalysis, using as model Escherichia coli and Pseudomonas sp. cells. It was observed that the process efficiency is related to initial cell concentration, light intensity, UV irradiation exposure time, TiO2 concentration increase. The ultimate removal efficiency was above 99.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coat protein gene of Apple stem grooving virus (ASGV) was amplified by RT-PCR, cloned, sequenced and subcloned in the expression vector pMal-c2. This plasmid was used to transform Escherichia coli BL21c+ competent cells. The ASGV coat protein (cp) was expressed as a fusion protein containing a fragment of E. coli maltose binding protein (MBP). Bacterial cells were disrupted by sonication and the ASGVcp/MBP fusion protein was purified by amylose resin affinity chromatography. Polyclonal antibodies from rabbits immunized with the fusion protein gave specific reactions to ASGV from infected apple (Malus domestica) cv. Fuji Irradiada and Chenopodium quinoa at dilutions of up to 1:1,000 and 1:2,000, respectively, in plate trapped ELISA. The ASGVcp/MBP fusion protein reacted to a commercial antiserum against ASGV in immunoblotting assay. The IgG against ASGVcp/MBP performed favorably in specificity and sensitivity to the virus. This method represents an additional tool for the efficient ASGV-indexing of apple propagative and mother stock materials, and for use in support of biological and molecular techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to research the occurrence of Salmonella spp. and Escherichia coli in feces samples of sparrows, as well as to identify the pathogenicity, cytotoxicity and sensitivity profile of the isolates to antimicrobial use. Two hundred and twenty eight sparrows were captured in eight farms. The in vitro pathogenicity test was performed by the isolates culture on congo red-magnesium oxalate Agar, whilst the in vivo pathogenicity test was performed in one day-old chicks. In order to study the cytotoxic effects of indicators, samples were inoculated into Vero cells. The results obtained for Escherichia coli isolation confirmed the presence of this microorganism in 30 (13.2%) of the evaluated samples. Out of those isolates, 10 (33.3%) presented the capacity of absorbing ongo red. As for in vivo pathogenicity a 68.0% of mortality rate of the evaluated samples was observed. Out of 20 isolates tested for cytotoxin production, none of them presented cytotoxic effect in the Vero cells. The Salmonella spp was isolated only in one sample (0.04%), and it was identified as Salmonella enterica subspecies houtenae. Results obtained through this research indicate the need for new studies to identify other virulence factors of E. coli samples and to delineate the phylogenetic profile of the isolates in order to establish a relation with colibacillosis outbreaks in chickens and broilers in the studied region, as well as to analyze the critical points in the aviculture productive chain to identify the source of Salmonella enterica subspecies houtenae.