952 resultados para ENHANCED PERFORMANCE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal nanoparticle catalysts have in the last decades been extensively researched for their enhanced performance compared to their bulk counterpart. Properties of nanoparticles can be controlled by modifying their size and shape as well as adding a support and stabilizing agent. In this study, preformed colloidal gold nanoparticles supported on activated carbon were tested on the reduction of 4-nitrophenol by NaBH4, a model reaction for evaluating catalytic activity of metal nanoparticles and one with high significance in the remediation of industrial wastewaters. Methods of wastewater remediation are reviewed, with case studies from literature on two major reactions, ozonation and reduction, displaying the synergistic effects observed with bimetallic and trimetallic catalysts, as well as the effects of differences in metal and support. Several methods of preparation of nanoparticles are discussed, in particular, the sol immobilization technique, which was used to prepare the supported nanoparticles in this study. Different characterization techniques used in this study to evaluate the materials and spectroscopic techniques to analyze catalytic activities of the catalyst are reviewed: ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) analysis, X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) imaging. Optimization of catalytic parameters was carried out through modifications in the reaction setup. The effects of the molar ratio of reactants, stirring, type and amount of stabilizing agent are explored. Another important factor of an effective catalyst is its reusability and long-term stability, which was examined with suggestions for further studies. Lastly, a biochar support was newly tested for its potential as a replacement for activated carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme weather events related to deep convection are high-impact critical phenomena whose reliable numerical simulation is still challenging. High-resolution (convection-permitting) modeling setups allow to switch off physical parameterizations accountable for substantial errors in convection representation. A new convection-permitting reanalysis over Italy (SPHERA) has been produced at ARPAE to enhance the representation and understanding of extreme weather situations. SPHERA is obtained through a dynamical downscaling of the global reanalysis ERA5 using the non-hydrostatic model COSMO at 2.2 km grid spacing over 1995-2020. This thesis aims to verify the expectations placed on SPHERA by analyzing two weather phenomena that are particularly challenging to simulate: heavy rainfall and hail. A quantitative statistical analysis over Italy during 2003-2017 for daily and hourly precipitation is presented to compare the performance of SPHERA with its driver ERA5 considering the national network of rain gauges as reference. Furthermore, two extreme precipitation events are deeply investigated. SPHERA shows a quantitative added skill over ERA5 for moderate to severe and rapid accumulations in terms of adherence to the observations, higher detailing of the spatial fields, and more precise temporal matching. These results prompted the use of SPHERA for the investigation of hailstorms, for which the combination of multiple information is crucial to reduce the substantial uncertainties permeating their understanding. A proxy for hail is developed by combining hail-favoring environmental numerical predictors with observations of ESWD hail reports and satellite overshooting top detections. The procedure is applied to the extended summer season (April-October) of 2016-2018 over the whole SPHERA spatial domain. The results indicate maximum hail likelihood over pre-Alpine regions and the northern Adriatic sea around 15 UTC in June-July, in agreement with recent European hail climatologies. The method demonstrates enhanced performance in case of severe hail occurrences and the ability to separate between ambient signatures depending on hail severity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of Au nanorods and Ag nanocubes as analytical sensors was evaluated for three different classes of herbicides. The use of such anisotropic nanoparticles in surface-enhanced Raman scattering (SERS) experiments allows the one to obtain the spectrum of crystal violet dye in the single molecule regime, as well as the pesticides dichlorophenoxyacetic acid (2,4-D), trichlorfon and ametryn. Such metallic substrates show high SERS performance at low analyte concentrations making them adequate for use as analytical sensors. Density functional theory (DFT) calculations of the geometries and vibrational wavenumbers of the adsorbates in the presence of silver or gold atoms were used to elucidate the nature of adsorbate-nanostructure bonding in each case and support the enhancement patterns observed in each SERS spectrum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fault injection is frequently used for the verification and validation of dependable systems. When targeting real time microprocessor based systems the process becomes significantly more complex. This paper proposes two complementary solutions to improve real time fault injection campaign execution, both in terms of performance and capabilities. The methodology is based on the use of the on-chip debug mechanisms present in modern electronic devices. The main objective is the injection of faults in microprocessor memory elements with minimum delay and intrusiveness. Different configurations were implemented and compared in terms of performance gain and logic overhead.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we evaluate the performance of our earlier proposed enhanced relay-enabled distributed coordination function (ErDCF) for wireless ad hoc networks. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 distributed coordination function (DCF). This is a result of. 1) using relay which helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission, 2) using dynamic preamble (i.e. using short preamble for the relay transmission) which further increases the throughput and lower overall blocking time and also by 3) reducing unnecessary overhearing (by other nodes not involved in transmission). We evaluate the throughput and energy performance of the ErDCF with different rate combinations. ErDCF (11,11) (ie. R1=R2=11 Mbps) yields a throughput improvement of 92.9% (at the packet length of 1000 bytes) and an energy saving of 72.2% at 50 nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of non-toxic fluride compounds as direct replacements for Thorium Fluoride (ThF4) has renewed interest in the use of low index fluoride compounds in high performance infrared filters. This paper reports the results of an investigation into the effects of combining these low index materials, particularly Barium Fluoride (BaF2), with the high index material Lead Telluride (PbTe) in bandpass and edge filters. Infrared filter designs using conventional and the new material ombination are compared, and infrared filters using these material combinations have been manufactured and have been shown to suffer problems with residual stress. A possible solution to this problem utilising Zinc Sulphide (ZnS) layers with compensating compressive stress is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the economics of Enhanced Landfill Mining (ELFM) both from a private point of view as well as from a society perspective. The private potential is assessed using a case study for which an investment model is developed to identify the impact of a broad range of parameters on the profitability of ELFM. We found that especially variations in Waste-to-Energy (WtE efficiency, electricity price, CO2-price, WtE investment and operational costs) and ELFM support explain the variation in economic profitability measured by the Internal Rate of Return. To overcome site-specific parameters we also evaluated the regional ELFM potential for the densely populated and industrial region of Flanders (north of Belgium). The total number of potential ELFM sites was estimated using a 5-step procedure and a simulation tool was developed to trade-off private costs and benefits. The analysis shows that there is a substantial economic potential for ELFM projects on the wider regional level. Furthermore, this paper also reviews the costs and benefits from a broader perspective. The carbon footprint of the case study was mapped in order to assess the project’s net impact in terms of greenhouse gas emissions. Also the impacts of nature restoration, soil remediation, resource scarcity and reduced import dependence were valued so that they can be used in future social cost-benefit analysis. Given the complex trade-off between economic, social and environmental issues of ELFM projects, we conclude that further refinement of the methodological framework and the development of the integrated decision tools supporting private and public actors, are necessary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tiny increases in the transmittance of optical materials within a CPV module can have an important impact on the economy of a plant. This is certainly true in systems comprising multi-junction solar cells, whose high performance, based on a balanced photocurrent generation among the series-connected junctions, is very sensitive to spectrum variations. Every efficiency point gained causes not only an increase in the kilowatts hour produced, but a higher benefit on it, since the difference between electricity tariff and Levelized Cost of Electricity (LCOE) rises. This work studies the impact on the LCOE of a plant based on modules comprising PMMA lenses of two different types, standard UV blocking grade which is normally used for outdoor applications at high DNI climate and a specialty stabilized UV-enhanced transmittance acrylic (see Figure 1). Energy production will be compared for these two systems throughout the year at different sites to analyze when (season, time of the day) and where the usage of the enhanced PMMA is justified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To examine the objective clinical performance of ‘comfort-enhanced’ daily disposable contact lenses over a 16-h day. Methods: Four contact lenses (Hilafilcon B, Etafilcon A Plus, Nelfilcon A and Nelfilcon A Plus) were evaluated in an investigator masked, open label trial at the end of a week’s bilateral wear. Pre-lens noninvasive tear break-up time (PL-NITBUT), tear prism height, bulbar hyperaemia and ocular surface temperature (OST) were measured with the lens in situ at 8, 12 and 16 h of wear. Results: There was no difference between how many hours the lenses types were worn each day (F = 0.90, p = 0.44). The PL-NITBUT decreased with the duration of daily lens wear (F = 32.0, p < 0.001) and was more stable with Nelfilcon A Plus (F = 6.00, p = 0.002) than with the other lenses evaluated. Bulbar blood vessels increased in coverage (F = 11.5, p < 0.001) but not overall redness (F = 0.0, p = 0.99) with the duration of daily lens wear, but there was no difference between the lenses (p > 0.05). The tear prism height decreased with the duration of daily wear (F = 27.0, p < 0.001) and differed between lenses (F = 2.9, p = 0.04). The OST decreased with the duration of lens wear (F = 119.7, p < 0.001) and was reduced by daily disposable lens wear (F = 7.88, p < 0.001), but did not differ between lenses (F = 0.88, p = 0.45). Conclusions: Objective measures of tear film indicated a difference between the lenses evaluated for PLNITBUT and tear prism height, but not for wearing time or bulbar conjunctival hyperaemia. Therefore clinical benefits of daily disposable ‘comfort enhancing’ contact lenses can be measured, but challenges remain in producing contact lenses that do not compromise anterior eye physiology over the whole day. 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. © 2013 Blackmore-Wright et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Haloclean a performance enhanced low temperature pyrolysis for biomass developed by Forschungszentrum Karlsruhe and Sea Marconi Is closing the gap between classical and fast pyrolysis approaches. For pyrolysis of straw (chaffed-, finely ground and pellets) temperature ranges between 320 to 420°C and residence times of only 1 to 5 minutes can be realized. Liquid yields of up to 45 wt-% and 35 wt-% of solids are possible. Solid yields can be increased up to 73 wt-% while loosing 4.5 % of the feed energy by pyrolysis gases only. Toxicity tests of the fractions do not show relevant numbers.