946 resultados para ENDOTOXIN-INDUCED INFLAMMATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.

METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.

RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.

CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: High-fat diets may contribute to metabolic disease via postprandial changes in serum endotoxin and inflammation. It is unclear how dietary fat composition may alter these parameters. We hypothesized that a meal rich in n-3 (ω3) fatty acids would reduce endotoxemia and associated inflammation but a saturated or n-6 (ω6) fatty acid-rich meal would increase postprandial serum endotoxin concentrations and systemic inflammation in healthy adults. Methods: Healthy adults (n = 20; mean age 25 ± 3.2 S.D. years) were enrolled in this single-blind, randomized, cross-over study. Participants were randomized to treatment and reported to the laboratory, after an overnight fast, on four occasions separated by at least one week. Participants were blinded to treatment meal and consumed one of four isoenergetic meals that provided: 1) 20 % fat (control; olive oil) or 35 % fat provided from 2) n-3 (ω3) (DHA = 500 mg; fish oil); 3) n-6 (ω6) (7.4 g; grapeseed oil) or 4) saturated fat (16 g; coconut oil). Baseline and postprandial blood samples were collected. Primary outcome was defined as the effect of treatment meal on postprandial endotoxemia. Serum was analyzed for metabolites, inflammatory markers, and endotoxin. Data from all 20 participants were analyzed using repeated-measures ANCOVA. Results: Participant serum endotoxin concentration was increased during the postprandial period after the consumption of the saturated fat meal but decreased after the n-3 meal (p < 0.05). The n-6 meal did not effect a different outcome in participant postprandial serum endotoxin concentration from that of the control meal (p > 0.05). There was no treatment meal effect on participant postprandial serum biomarkers of inflammation. Postprandial serum triacylglycerols were significantly elevated following the n-6 meal compared to the n-3 meal. Non-esterified fatty acids were significantly increased after consumption of the saturated fat meal compared to other treatment meals. Conclusions: Meal fatty acid composition modulates postprandial serum endotoxin concentration in healthy adults. However, postprandial endotoxin was not associated with systemic inflammation in vivo. Trial registration: This study was retrospectively registered at clinicaltrials.gov as NCT02521779 on July 28, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose. To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low-, moderate- and high-loads. The impact on lymphoedema status and associated symptoms was also compared. Methods Twenty-one women aged 62 ± 10 years with mild to severe BCRL participated in the study. Participants completed a low-load (15-20 repetition maximum), moderate-load (10-12 repetition maximum) and high-load (6-8 repetition maximum) exercise sessions consisting of three sets of six upper-body resistance exercises. Sessions were completed in a randomized order separated by a seven to 10 day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation (creatine kinase [CK], C-reactive protein [CRP], interleukin-6 [IL-6] and tumour necrosis factor-alpha [TNF-α]). Lymphoedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using visual analogue scales (VAS) for pain, heaviness and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in CK, CRP, IL-6 and TNF-α were observed following the low-, moderate- or high-load resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the three resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads. Given these observations, moderate- to high-load resistance training is recommended for this patient population as these loads prompt superior physiological and functional benefits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Patients with atopic dermatitis often have a poor long-term response to conventional topical or systemic treatments. Staphylococcal superinfections, skin atrophy due to corticosteroid use, and asthma and allergic rhinitis are common. Only a few, usually short-term, studies have addressed the effects of different treatments on these problems. Tacrolimus ointment is the first topical compound suitable for long-term treatment. The aim of this thesis was to evaluate the effects of long-term topical tacrolimus treatment on cutaneous staphylococcal colonization, collagen synthesis, and symptoms and signs of asthma and allergic rhinitis. Methods: Patients with moderate-to-severe atopic dermatitis were treated with intermittent 0.1% tacrolimus ointment in prospective, open studies lasting for 6 to 48 months. In Study I, cutaneous staphylococcal colonization was followed for 6 to 12 months. In Study II, skin thickness and collagen synthesis were followed by skin ultrasound and procollagen I and III propeptide concentrations of suction blister fluid samples for 12 to 24 months and compared with a group of corticosteroid-treated atopic dermatitis patients and with a group of healthy subjects. Study III was a cross-sectional study of the occurrence of respiratory symptoms, bronchial hyper-responsiveness, and sputum eosinophilia in atopic dermatitis patients and healthy controls. In Study V, the same parameters as in Study III were assessed in atopic dermatitis patients before and after 12 to 48 months of topical tacrolimus treatment. Study IV was a retrospective follow-up of the effect of tacrolimus 0.03% ointment on severe atopic blepharoconjunctivitis and conjunctival cytology. Results: The clinical response to topical tacrolimus was very good in all studies (p≤0.008). Staphylococcal colonization decreased significantly, and the effect was sustained throughout the study (p=0.01). Skin thickness (p<0.001) and markers of collagen synthesis (p<0.001) increased in the tacrolimus-treated patients significantly, whereas they decreased or remained unchanged in the corticosteroid-treated controls. Symptoms of asthma and allergic rhinitis (p<0.0001), bronchial hyper-responsiveness (p<0.0001), and sputum eosinophilia (p<0.0001) were significantly more common in patients with atopic dermatitis than in healthy controls, especially in subjects with positive skin prick tests or elevated serum immunoglobulin E. During topical tacrolimus treatment the asthma and rhinitis (p=0.005 and p=0.002) symptoms and bronchial hyper-responsiveness (p=0.02) decreased significantly, and serum immunoglobulin E and sputum eosinophils showed a decreasing trend in patients with the best treatment response. Treatment of atopic blepharoconjunctivitis resulted in a marked clinical response and a significant decrease in eosinophils, lymphocytes, and neutrophils in the conjunctival cytology samples. No significant adverse effects or increase in skin infections occurred in any study. Conclusions: The studies included in this thesis, except the study showing an increase in skin collagen synthesis in tacrolimus-treated patients, were uncontrolled, warranting certain reservations. The results suggest, however, that tacrolimus ointment has several beneficial effects in the long-term intermittent treatment of atopic dermatitis. Tacrolimus ointment efficiently suppresses the T cell-induced inflammation of atopic dermatitis. It has a normalizing effect on the function of the skin measured by the decrease in staphylococcal colonization. It does not cause skin atrophy as do corticosteroids but restores the skin collagen synthesis in patients who have used corticosteroids. Tacrolimus ointment has no marked systemic effect, as the absorption of the drug is minimal and decreases along with skin improvement. The effects on the airway: decrease in bronchial hyper-responsiveness and respiratory symptoms, can be speculated to be caused by the decrease in T cell trafficking from the skin to the respiratory tissues as the skin inflammation resolves, as well as inhibition of epicutaneous invasion of various antigens causing systemic sensitization when the skin barrier is disrupted as in atopic dermatitis. Patients with moderate-to-severe atopic dermatitis seem to benefit from efficient long-term treatment with topical tacrolimus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological and experimental studies suggest that changes in gut microbial balance are associated with increases in the prevalence of allergic diseases. Probiotics are proposed to provide beneficial immunoregulatory signals which aid in oral tolerance achievement and alleviation of symptoms of allergic diseases. The present study evaluates both the immunological mechanisms of probiotics in infants with allergic diseases and their preventive aspect among infants prone to allergy. Furthermore, the purpose of the study was to characterise the immunological features of cord blood mononuclear cells (CBMCs) in infants at high genetic risk for allergy. GATA-3 expression (p = 0.03), interleukin (IL) -2(p = 0.026), and IL-5 (p = 0.013) secretion of stimulated CBMCs were higher in IgE-sensitized infants at age 2 than in non-allergic, non-sensitized infants. Lactobacillus GG (LGG) treatment increased secretion of IFN-γ by PBMCs in vitro in infants with cow s milk allergy (CMA) (p = 0.006) and in infants with IgE-associated eczema (p = 0.017), when compared to levels in the placebo group. A probiotic mixture, increased secretion of IL-4 by PBMCs in vitro in infants with CMA (p = 0.028), when compared with placebo-group levels. The LGG treatment induced higher plasma C-reactive protein (CRP) (p = 0.021) and IL-6 (p = 0.036) levels in infants with IgE-associated eczema than in the placebo group. The probiotic mixture induced higher plasma IL-10 levels in infants with eczema (p = 0.016). In the prevention study of allergic dis-eases, the infants receiving the probiotic mixture had higher plasma levels of CRP (p = 0.008), total IgA (p = 0.016), total IgE (p = 0.047), and IL-10 (p = 0.002) than did infants in the placebo group. Increased CRP level at age 6 months was associated with a decreased risk for eczema at age 2 not only in the infants who received probiotics but also in the placebo group (p = 0.034). In conclusion, the priming of the GATA-3 and IL-5 pathway can occur in utero, and a primary feature of T-cells predisposing to IgE-sensitization seems to directly favour Th2 deviation. LGG treatment induced increased plasma levels of CRP and IL-6 in infants with IgE-associated eczema, suggesting an activation of innate immu-nity. The probiotic mixture, when given to allergy-prone infants, induced inflammation, detected as increased plasma CRP levels, which at age 6 months was associated with decreased risk for eczema at age 2.The probiotic-induced response in allergy prone infants was characterized by their higher plasma IL-10, total IgE, and CRP levels, without induction of an allergen-specific IgE response. In this respect, the probiotics in infancy appear to induce protective immune profiles that are characteristic for chronic low-grade inflammation, a response resembling that of helminth-like infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ticks are blood-feeding arthropods that may secrete immunosuppressant molecules, which inhibit host inflammatory and immune responses and provide survival advantages to pathogens at tick bleeding sites in hosts. In the current work, two families of immunoregulatory peptides, hyalomin-A and -B, were first identified from salivary glands of hard tick Hyalomma asiaticum asiaticum. Three copies of hyalomin-A are encoded by an identical gene and released from the same protein precursor. Both hyalomin-A and -B can exert significant anti-inflammatory functions, either by directly inhibiting host secretion of inflammatory factors such as tumor necrosis factor-alpha, monocyte chemotectic protein-1, and interferon-gamma or by indirectly increasing the secretion of immunosuppressant cytokine of interleukin-10. Hyalomin-A and -B were both found to potently scavenge free radical in vitro in a rapid manner and inhibited adjuvant-induced inflammation in mouse models in vivo. The JNK/SAPK subgroup of the MAPK signaling pathway was involved in such immunoregulatory functions of hyalomin-A and -B. These results showed that immunoregulatory peptides of tick salivary glands suppress host inflammatory response by modulating cytokine secretion and detoxifying reactive oxygen species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early growth response-1 (Egr-1) is expressed in human airways and found to modulate tumor necrosis factor, immunoglobulin E (IgE), airway responsiveness, and interleukin-13-induced inflammation in mice. We investigated the effects of Chinese-tagging singl

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular and cellular basis of stress pathology remains an important research question in biological science. A better understanding of this may enable the development of novel approaches for the treatment of stress-related disorders. There is a considerable body of scientific evidence suggesting that dietary lipids, phospholipids and omega-3 polyunsaturated fatty acids (n-3 PUFAs), have therapeutic potential for certain psychiatric disorders. Thus, we proposed n-3 PUFAs as a novel strategy for the prevention or amelioration of stress-related disorders. We hypothesised that these compounds would improve behavioural and neurobiological responses and alter gut microbial composition. Furthermore, we proposed a new mechanism of action exerted by n-3 PUFAs using an in vitro model of stress. Lastly, we explored the protective effects of both phospholipids and n-3 PUFAs against neuroinflammation, which has been shown to contribute to the development of stress-related disorders. We provide further evidence that glucocorticoids, inflammation and early-life stress induce vulnerability to psychopathologies. Specifically, we have demonstrated that corticosterone (CORT) alters cortical neuron and astrocyte percentage composition, reduces brain-derived-neuronal factor (BDNF) expression, and induces glucocorticoid receptor (GR) down-regulation in mixed cortical cultures. Interestingly, we found that lipopolysaccharide (LPS) treatment resulted in an over-expression of pro-inflammatory cytokines in cortical astrocyte cultures. Moreover, we demonstrate that early-life stress induces changes to the monoaminergic and immune systems as well as altered neuroendocrine response to stressors later in life. In addition, we found that early-life stress alters the gut microbiota in adulthood. These data demonstrate that n-3 PUFAs can attenuate CORT-induced cellular changes, but not those caused by LPS, within the cerebral cortex. Similarly, phospholipids were unable to reverse LPS-induced inflammation in cultured astrocytes. In addition, this thesis proposes that n-3 PUFAs may prevent the development or lessen the symptoms of mental illnesses, ameliorating anxiety- and depressive-like symptoms as well as cognitive effects, particularly when administered during neurodevelopment. Such effects may be mediated by GR activation as well as by modification of the gut microbiota composition. Taken together, our findings suggest that n-3 PUFAs have therapeutic potential for stress-related disorders and we provide evidence for the mechanisms by which they may exert these effects. These findings contribute to an exciting and growing body of research suggesting that nutritional interventions may have an important role to play in the treatment of stress-related psychiatric conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS) and nitric oxide (NO) determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS) in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos) and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.