950 resultados para EMERGING INFECTIOUS-DISEASE
Resumo:
Abstract Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Resumo:
White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.
Resumo:
White-nose syndrome (WNS) is an emerging infectious disease of hibernating bats linked to the death of an estimated 5.7 million or more bats in the northeastern United States and Canada. White-nose syndrome is caused by the cold-loving fungus Pseudogymnoascus destructans (Pd), which invades the skin of the muzzles, ears, and wings of hibernating bats. Previous work has shown that WNS-affected bats arouse to euthermic or near euthermic temperatures during hibernation significantly more frequently than normal and that these too-frequent arousals are tied to severity of infection and death date. We quantified the behavior of bats during these arousal bouts to understand better the causes and consequences of these arousals. We hypothesized that WNS-affected bats would display increased levels of activity (especially grooming) during their arousal bouts from hibernation compared to WNS-unaffected bats. Behavior of both affected and unaffected hibernating bats in captivity was monitored from December 2010 to March 2011 using temperature-sensitive dataloggers attached to the backs of bats and infrared motion-sensitive cameras. The WNS-affected bats exhibited significantly higher rates of grooming, relative to unaffected bats, at the expense of time that would otherwise be spent inactive. Increased self-grooming may be related to the presence of the fungus. Elevated activity levels in affected bats likely increase energetic stress, whereas the loss of rest (inactive periods when aroused from torpor) may jeopardize the ability of a bat to reestablish homeostasis in a number of physiologic systems.
Resumo:
The objective of this project was to determine the relationship between hibernacula microclimate and White-nose Syndrome (WNS), an emerging infectious disease in bats. Microclimate was examined on a species scale and at the level of the individual bat to determine if there was a difference in microclimate preference between healthy and WNS-affected little brown myotis (Myotis lucifugus) and to determine the role of microclimate in disease progression. There is anecdotal evidence that colder, drier hibernacula are less affected by WNS. This was tested by placing rugged temperature and humidity dataloggers in field sites throughout the eastern USA, experimentally determining the response to microclimate differences in captive bats, and testing microclimate roosting preference. This study found that microclimate significantly differed from the entrance of a hibernaculum versus where bats traditionally roost. It also found hibernaculum temperature and sex had significant impacts on survival in WNS-affected bats. Male bats with WNS had increased survivability over WNS-affected female bats and WNS bats housed below the ideal growth range of the fungus that causes WNS, Geomyces destructans, had increased survival over those housed at warmer temperatures. The results from this study are immediately applicable to (1) predict which hibernacula are more likely to be infected next winter, (2) further our understanding of WNS, and (3) determine if direct mitigation strategies, such as altering the microclimate of mines, will be effective ways to combat the spread of the fungus.
Resumo:
The widespread mortality of hibernating bats is associated with the emerging infectious disease white-nose syndrome (WNS), and has provoked a strong interest in understanding which bats will survive, and why? The ability of infected bats to resist WNS may depend upon variation in the expression of different characteristics. In a captive colony of big brown bats, I sought to characterize the phenotypic variability, repeatability, and survivability for several key ¿survival¿ traits, including: torpor patterns, microclimate preferences, and wound healing capacity. Torpor patterns were profiled using temperature sensitive dataloggers throughout the hibernation season, while microclimate preferences were quantified by using temperature-graded boxes and thermal imaging. In order to assess wound healing capacity, small wing biopsies were obtained from each bat and healing progress was tracked for one month. Individuals exhibited a wide range of phenotypes that were significantly influenced by sex and body condition. Repeatability estimates suggest that there is not a strong genetic basis for the observed variation in torpor patterns or microclimate preferences. Certain phenotypes (e.g., BMI) were associated with an increased probability of overwinter survivorship, which suggests a basis for intra-species differences in WNS susceptibility. The results from this project provide novel insight into what we know about ¿who will survive,¿ and will influence the direction and implementation of future conservation and mitigation strategies.
Resumo:
Staphylococcus aureus bacteremia (SAB) is common and increasing worldwide. A retrospective review was undertaken to quantify the number of cases, their place of acquisition, and the proportions caused by methicillin-resistant.S. aureus (MRSA) in 17 hospitals in Australia. Of 3,192 episodes, 1,571 (49%) were community onset. MRSA caused 40% of hospital-onset episodes and 12% of community-onset episodes. The median rate of SAB was 1.48/1,000 admissions (range 0.61-3.24; median rate for hospital-onset SAB was 0.7/1,000 and for community onset 0.8/1,000 admissions). Using these rates, we estimate that approximate to 6,900 episodes of SAB occur annually in Australia (35/100,000 population). SAB is common, and a substantial proportion of cases may be preventable. The epidemiology is evolving, with > 10% of community-onset SAB now caused by MRSA. This is an emerging infectious disease concern and is likely to impact on empiric antimicrobial drug prescribing in suspected cases of SAB.
Resumo:
As key prey, the wild rabbit downsize constitutes a major drawback on the endangered Iberian lynx (Lynx pardinus) re-introduction in the Iberia. Several captive breeding units mostly located in Alentejo, endeavour the wild rabbit repopulation of depleted areas assigned for the lynx re-introduction. Here we report an RHDV2 outbreak that occurred in early 2016 in a wild rabbit captive breeding unit located in Barrancos municipality. The estimated mortality rate between March and April 2016 was approximately 8.67%. Anatomopathologic examination was carried out for 13 victimized rabbits. Molecular characterization was based on the complete vp60 capsid gene. The 13 rabbit carcasses investigated showed typical macroscopic RHD lesions testing positive to RHDV2-RNA. Comparison of the vp60 nucleotide sequences obtained from two specimens with others publically available disclosed similarities below 98.22% with RHDV2 strains originated in the Iberia and Azores and revealed that the two identical strains from Barrancos-2016 contain six unique single synonymous nucleotide polymorphisms. In the phylogenetic analysis performed, the Barrancos-2016 strains clustered apart from other known strains,meaning they may represent new evolutionary RHDV2 lineages. No clear epidemiological link could be traced for this outbreak where the mortalities were lower compared with previous years. Yet, network analysis suggested a possible connection between the missing intermediates from which the strains from Barrancos 2013, 2014 and 2016 have derived. It is therefore possible that RHDV2 has circulated endemically in the region since 2012, with periodic epizootic occurrences. Still, six years after its emergence in wild rabbits, RHDV2 continues to pose difficulties to the establishment of natural wild rabbit populations that are crucial for the self-sustainability of the local ecosystems.
Resumo:
The purpose of this work was to investigate possible patterns occurring in the sewage bacterial content of four cities (Bologna, Budapest, Rome, Rotterdam) over time (March 2020 - November 2021), also considering the possible effects of the lockdown periods due to the COVID-19 pandemic. The sewage metagenomics data were provided within VEO (Versatile Emerging infectious disease Observatory) project. The first analysis was the evaluation of the between samples diversity, looking for (dis)similarities among the cities, as well as among different time periods (seasonality). To this aim, we computed both similarity networks and Principal Coordinate Analysis (PCoA) plots based on the Bray-Curtis metric. Then, the alpha-biodiversity of the samples was estimated by means of different diversity indices. By looking at the temporal behaviour of the biodiversity in the four cities, we noticed an abrupt decrease in both Rome and Budapest in the Summer of 2020, that is related to: the prevalence of some species when the minimum occurred, and the change in correlations among species (studied via correlation networks), which is enriched in the period of minimum biodiversity. Rotterdam samples seem to be very different with respect to those from the other cities, as confirmed by PCoA. Moreover, the Rotterdam time series is proved to be stable and stationary also in terms of biodiversity. The low variability in the Rotterdam samples seems to be related to the species of Pseudomonas genus, which are highly variable and plentiful in the other cities, but are not among the most abundant in Rotterdam. Also, we observed that no seasonality effect emerged from the time series of the four cities. Regarding the impact of lockdown periods due to the COVID-19 pandemic, from the limited data available no effect on the time series considered emerges. More samples will be soon available and these analyses will be performed also on them, so that the possible effects of lockdowns may be studied.
Resumo:
Abstract: INTRODUCTION: Hantavirus diseases are emerging human diseases caused by Hantavirus spp. of the Bunnyaviridae family. Hantavirus pulmonary syndrome (HPS) has been detected in the Federal District (DF) of Brazil since 2004. Among the 27 Brazilian Federal Units, DF has the highest fatality rate. More than 10 years have already passed since then, with confirmation of cases caused by the Araraquara and Paranoa species. The reservoir is Necromys lasiurus. METHODS: Local surveillance data of the confirmed cases were analyzed, including age, sex, month and year of occurrence, clinical symptoms, syndromes and outcomes, and probable transmission place (PTP). The cases were mainly confirmed by IgM detection with a capture enzyme immunoassay. The cases were classified as autochthonous if PTPs were in the DF area. RESULTS: From 2004 to 2013, in the DF, 126 cases of hantavirus were confirmed, and the cumulative incidence was 5.0 per 100,000 inhabitants. The occurrence of cases was predominantly from April to August. At least 75% of the cases were autochthonous. Acute respiratory failure was reported in 47.5% of cases, and the fatality rate was 40%. CONCLUSIONS: In the DF, the cumulative incidence of HPS was one of the highest worldwide. A seasonal pattern of hantavirus disease in the dry season is clear. There was a high frequency of severe clinical signals and symptoms as well as a high fatality rate. For the near future, visitors and inhabitants of DF rural areas, particularly male adults, should receive continuous education about hantavirus transmission and prevention.
Resumo:
An increasingly asked question is 'can we confidently link bats with emerging viruses?'. No, or not yet, is the qualified answer based on the evidence available. Although more than 200 viruses - some of them deadly zoonotic viruses - have been isolated from or otherwise detected in bats, the supposed connections between bats, bat viruses and human diseases have been raised more on speculation than on evidence supporting their direct or indirect roles in the epidemiology of diseases (except for rabies). However, we are convinced that the evidence points in that direction and that at some point it will be proved that bats are competent hosts for at least a few zoonotic viruses. In this review, we cover aspects of bat biology, ecology and evolution that might be relevant in medical investigations and we provide a historical synthesis of some disease outbreaks causally linked to bats. We provide evolutionary-based hypotheses to tentatively explain the viral transmission route through mammalian intermediate hosts and to explain the geographic concentration of most outbreaks, but both are no more than speculations that still require formal assessment.
Resumo:
Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.
Resumo:
Dental caries is a transmissible infectious disease in which mutans streptococci are generally considered to be the main etiological agents. Although the transmissibility of dental caries is relatively well established in the literature, little is known whether information regarding this issue is correctly provided to the population. The present study aimed at evaluating, by means of a questionnaire, the knowledge and usual attitude of 640 parents and caretakers regarding the transmissibility of caries disease. Most interviewed adults did not know the concept of dental caries being an infectious and transmissible disease, and reported the habit of blowing and tasting food, sharing utensils and kissing the children on their mouth. 372 (58.1%) adults reported that their children had already been seen by a dentist, 264 (41.3%) answered that their children had never gone to a dentist, and 4 (0.6%) did not know. When the adults were asked whether their children had already had dental caries, 107 (16.7%) answered yes, 489 (76.4%) answered no, and 44 (6.9%) did not know. Taken together, these data reinforce the need to provide the population with some important information regarding the transmission of dental caries in order to facilitate a more comprehensive approach towards the prevention of the disease.
Resumo:
To determine the epidemiology of human herpesvirus type 8 (HHV-8) among non-Amazonian native populations, we conducted a cross-sectional study in Brazil, Bolivia, and Paraguay. Our data show striking ethnic and geographic variations in the distribution of HHV-8 seroprevalences in Amazonian (77%) and non-Amazonian native populations (range 0%-83%).
Resumo:
To investigate a possible role for human rhinovirus C in respiratory exacerbations of children with cystic fibrosis, we conducted microbiologic testing on respiratory specimens from 103 such patients in Sao Paulo, Brazil, during 2006-2007. A significant association was found between the presence of human rhinovirus C and respiratory exacerbations.
Resumo:
To determine the presence of Kaposi sarcoma-associated herpesvirus (KSHV) and other serologic markers, we tested serum specimens of 339 Amerindians, 181 rural non-Amerindians, and 1,133 urban blood donors (13 Amerindians) in the Brazilian Amazon. High KSHV seroprevalence in children and inverse association with herpes simplex virus type 2 indicates predominant nonsexual transmission among Amerindians.