715 resultados para ELECTROCHEMISTRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are a large class of π-conjugated organic molecules with fused aromatic rings, which can be considered as fragments of 2D-graphene and have been extensively studied for their unique optical and electronic properties. The aim of this study is to understand the complex electrochemical behaviour of planar, curved, and heteroatom doped polycyclic aromatic molecules, particularly focusing on the oxidative coupling of their radical cations and the electrochemically induced cyclodehydrogenation reactions. In the first part of this thesis, the class of PAHs and aromatic nanostructures are introduced, and the reactivity of electrogenerated species is discussed, focusing on the electrochemical approach for the synthesis of extended π-conjugated structures. Subsequently, the electrochemical properties and reactivity of electrogenerated radical ions of planar and curved polyaromatics are correlated to their structures. In the third chapter, electrochemical cyclodehydrogenation of hexaphenylbenzene is used to prepare self-assembled hexabenzocoronene, directly deposited on an interdigitated electrode, which was characterised as organic electrochemical transistor. In the fourth chapter, the electrochemical behaviour of a family of azapyrene derivatives has been carefully investigated together with the electrogenerated chemiluminescence (ECL), both by ion-annihilation and co-reactant methods. Two structural azapyrene isomers with different nitrogen positions are thoroughly discussed in terms of redox and ECL properties. Interestingly, the ECL of only one of them showed a double emission with excimer formation. A detailed mechanism is discussed for the ECL by co-reactant benzoyl peroxide, to rationalise the different ECL behaviours of the two isomers on the basis of their topologically modulated electronic properties. In conclusion, the different electrochemical behaviours of PAHs were shown, focussing on the chemical reactivity of the electrogenerated species and taking advantage of it for important processes spanning from unconventional synthesis methods for carbon nanostructures to the exploitation of self-assembled nanostructured systems in organic electronics, to novel organic emitters in ECL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fruits juices are natural sources of several compounds that present antioxidant action. Together with the fruits, they contribute with almost 40% of the antioxidant capacity in a healthy diet avoiding and preventing diseases deriving from oxidative stress. The present study determined the antioxidant capacity of seven samples of industrialized fruits juices applying CRAC (Ceric Reducing/Antioxidant Capacity) assay, a new electrochemistry assay that evaluates, by means of chronoamperometric measurements, the ability of a sample in reducing species Ce4+ in acid media. At the end of the assay was obtained the following classification: cashew > guava > grape > mango > apple > orange > passion fruit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of an exercise on electrochemistry for General Chemistry students are presented. The difficulty encountered by students in predicting the shift in the potential of the hydrogen electrode under non-standard conditions prompted a search in textbooks on how the subject is developed. Besides several instances of inconsistencies in defining the standard state, such as including the temperature in the definition, a number of incorrect depictions of the hydrogen electrode were discovered. Of the 28 General Chemistry books, 16 Physical Chemistry books and 24 Internet pages, 30, 20 and 46%, respectively, showed devices that would not work in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrocompounds are bioactive molecules used as antibacterial, antiparasitic and antitumoral agents. In the past of years, these molecules have been broadly studied in several fields, such as medicinal chemistry, organic chemistry, biochemical, toxicology and electrochemistry. The nitrocompounds mode of action involves the biotransformation of the nitro group, releasing intermediates in the redox process. Some of those intermediates attack enzymes, membranes and DNA, providing the basis for their biological activity and adverse effects. In this report, some aspects regarding the biological activity, mechanism of action and toxicity of nitrocompounds are explored, purposing the research of new bioactive derivatives having low toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fin field effect transistors (FinFETS) are silicon-on-insulator (SOI) transistors with three-dimensional structures. As a result of some fabrication-process limitations (as nonideal anisotropic overetch) some FinFETs have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections, as expected. This geometric alteration results in some device issues, like carrier profile, threshold voltage, and corner effects. This work analyzes these consequences based on three-dimensional numeric simulation of several dual-gate and triple-gate FinFETs. The simulation results show that the threshold voltage depends on the sidewall inclination angle and that this dependence varies according to the body doping level. The corner effects also depend on the inclination angle and doping level. (C) 2008 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elastic properties of freestanding porous silicon layers fabricated by electrochemical anodization were studied by Raman scattering. Different anodization currents provided different degrees of porosity in the nanometer scale. Raman lines corresponding to the longitudinal optical phonons of crystalline and amorphous phases were observed. The amorphous volume fraction increased and the phonon frequencies for both phases decreased with increasing porosity. A strain distribution model is proposed whose fit to the experimental results indicates that the increasing nanoscale porosity causes strain relaxation in the amorphous domains and strain buildup in the crystalline ones. The present analysis has significant implications on the estimation of the crystalline Si domain's characteristic size from Raman scattering data. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3225832] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the fabrication of a nanothick Co-modified film electrochemically synthesized on layer-by-layer (LbL) structures made with dendrimer polyamidoamine/carbon nanotubes (PAMAM/CNT), and its electrocatalytic properties toward H(2)O(2) reduction. Scanning electron microscopy indicated the formation of a homogeneous, 14 nm thick Co film. The porous nature of the PAMAM/CNT LbL film allowed the electrolyte access to the bottom of the electrode, generating a homogenous Co electrodeposit. In addition, the nanostructure based on Co-modified PAMAM/CNT LbL exhibited high electrocatalytic activity for H(2)O(2) reduction when compared to the Co-free PAMAM/CNT LbL film, which demonstrates the suitability of the system studied for biosensing. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3602200] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrocatalytic reduction of hydrogen peroxide on a glassy carbon (GC) electrode modified with a ruthenium oxide hexacyanoferrate (RuOHCF) was investigated using rotating disc electrode (RDE) voltammetry aiming to improve the performance of the sensor for hydrogen peroxide detection. The influence of parameters such as rotation speed, film thickness and hydrogen peroxide concentration indicated that the rate of the cross-chemical reaction between Ru(II) centres immobilized into the film and hydrogen peroxide controls the overall process. The kinetic regime could be classified as LSk mechanism, according to the diagnostic table proposed by Albery and Hillman, and the kinetic constant of the mediated process was found to be 706 mol(-1) cm(3) s(-1). In the LSk case the reaction layer is located at a finite layer close to the modifier layer/solution interface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct borohydride fuel cells are promising high energy density portable generators. However, their development remains limited by the complexity of the anodic reaction: The borohydride oxidation reaction (BOR) kinetics is slow and occurs at high overvoltages, while it may compete with the heterogeneous hydrolysis of BH(4)(-). Nevertheless, one usually admits that gold is rather inactive toward the heterogeneous hydrolysis of BH(4)(-) and presents some activity regarding the BOR, therefore yielding to the complete eight-electron BOR. In the present paper, by coupling online mass spectrometry to electrochemistry, we in situ monitored the H(2) yield during BOR experiments on sputtered gold electrodes. Our results show non-negligible H(2) generation on Au on the whole BOR potential range (0-0.8 V vs reversible hydrogen electrode), thus revealing that gold cannot be considered as a faradaic-efficient BOR electrocatalyst. We further propose a relevant reaction pathway for the BOR on gold that accounts for these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.