993 resultados para ELECTROCHEMICAL PROBE
Resumo:
Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Cα), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators.
Resumo:
The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.
Resumo:
The work described in this thesis focuses on the development of an innovative bioimpedance device for the detection of breast cancer using electrical impedance as the detection method. The ability for clinicians to detect and treat cancerous lesions as early as possible results in improved patient outcomes and can reduce the severity of the treatment the patient has to undergo. Therefore, new technology and devices are continually required to improve the specificity and sensitivity of the accepted detection methods. The gold standard for breast cancer detection is digital x-ray mammography but it has some significant downsides associated with it. The development of an adjunct technology to aid in the detection of breast cancers could represent a significant patient and economic benefit. In this project silicon substrates were pattern with two gold microelectrodes that allowed electrical impedance measurements to be recorded from intact tissue structures. These probes were tested and characterised using a range of in vitro and ex vivo experiments. The end application of this novel sensor device was in a first-in-human clinical trial. The initial results of this study showed that the silicon impedance device was capable of differentiating between normal and abnormal (benign and cancerous) breast tissue. The mean separation between the two tissue types 4,340 Ω with p < 0.001. The cancer type and grade at the site of the probe recordings was confirmed histologically and correlated with the electrical impedance measurements to determine if the different subtypes of cancer could each be differentiated. The results presented in this thesis showed that the novel impedance device demonstrated excellent electrochemical recording potential; was biocompatible with the growth of cultured cell lines and was capable of differentiating between intact biological tissues. The results outlined in this thesis demonstrate the potential feasibility of using electrical impedance for the differentiation of biological tissue samples. The novelty of this thesis is in the development of a new method of tissue determination with an application in breast cancer detection.
Resumo:
Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.
Resumo:
Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.
Resumo:
The Li-O2 battery may theoretically possess practical gravimetric energy densities several times greater than the current state-of-the-art Li-ion batteries.1 This magnitude of development is a requisite for true realization of electric vehicles capable of competing with the traditional combustion engine. However, significant challenges must be addressed before practical application may be considered. These include low efficiencies, low rate capabilities and the parasitic decomposition reactions of electrolyte/electrode materials resulting in very poor rechargeability.2-4 Ionic liquids, ILs, typically display several properties, extremely low vapor pressure and high electrochemical and thermal stability, which make them particularly interesting for Li-O2 battery electrolytes. However, the typically sluggish transport properties generally inhibit rate performance and cells suffer similar inefficiencies during cycling.5,6
In addition to the design of new ILs with tailored properties, formulating blended electrolytes using molecular solvents with ILs has been considered to improve their performance.7,8 In this work, we will discuss the physical properties vs. the electrochemical performance of a range of formulated electrolytes based on tetraglyme, a benchmark Li-O2 battery electrolyte solvent, and several ILs. The selected ILs are based on the bis{(trifluoromethyl)sulfonyl}imide anion and alkyl/ether functionalized cyclic alkylammonium cations, which exhibit very good stability and moderate viscosity.9 O2 electrochemistry will be investigated in these media using macro and microdisk voltammetry and O2 solubility/diffusivity is quantified as a function of the electrolyte formulation. Furthermore, galvanostatic cycling of selected electrolytes in Li-O2 cells will be discussed to probe their practical electrochemical performance. Finally, the physical characterization of the blended electrolytes will be reported in parallel to further determine structure (or formulation) vs. property relationships and to, therefore, assess the importance of certain electrolyte properties (viscosity, O2supply capability, donor number) on their performance.
This work was funded by the EPSRC (EP/L505262/1) and Innovate UK for the Practical Lithium-Air Batteries project (project number: 101577).
1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012).
2. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde and P. G. Bruce, Angew. Chem., Int. Ed., 50, 8609 (2011).
3. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov and A. C. Luntz, J. Phys. Chem. Lett., 3, 997 (2012).
4. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson and Y. Shao-Horn, J. Phys. Chem. Lett., 5, 2850 (2014).
5. Z. H. Cui, W. G. Fan and X. X. Guo, J. Power Sources, 235, 251 (2013).
6. F. Soavi, S. Monaco and M. Mastragostino, J. Power Sources, 224, 115 (2013).
7. L. Cecchetto, M. Salomon, B. Scrosati and F. Croce, J. Power Sources, 213, 233 (2012).
8. A. Khan and C. Zhao, Electrochem. Commun., 49, 1 (2014).
9. Z. J. Chen, T. Xue and J.-M. Lee, RSC Adv., 2, 10564 (2012).
Resumo:
“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.
Resumo:
The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).
Resumo:
Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.
Resumo:
The paper analyses the expected value of OD volumes from probe with fixed error, error that is proportional to zone size and inversely proportional to zone size. To add realism to the analysis, real trip ODs in the Tokyo Metropolitan Region are synthesised. The results show that for small zone coding with average radius of 1.1km, and fixed measurement error of 100m, an accuracy of 70% can be expected. The equivalent accuracy for medium zone coding with average radius of 5km would translate into a fixed error of approximately 300m. As expected small zone coding is more sensitive than medium zone coding as the chances of the probe error envelope falling into adjacent zones are higher. For the same error radii, error proportional to zone size would deliver higher level of accuracy. As over half (54.8%) of the trip ends start or end at zone with equivalent radius of ≤ 1.2 km and only 13% of trips ends occurred at zones with equivalent radius ≥2.5km, measurement error that is proportional to zone size such as mobile phone would deliver higher level of accuracy. The synthesis of real OD with different probe error characteristics have shown that expected value of >85% is difficult to achieve for small zone coding with average radius of 1.1km. For most transport applications, OD matrix at medium zone coding is sufficient for transport management. From this study it can be drawn that GPS with error range between 2 and 5m, and at medium zone coding (average radius of 5km) would provide OD estimates greater than 90% of the expected value. However, for a typical mobile phone operating error range at medium zone coding the expected value would be lower than 85%. This paper assumes transmission of one origin and one destination positions from the probe. However, if multiple positions within the origin and destination zones are transmitted, map matching to transport network could be performed and it would greatly improve the accuracy of the probe data.
Resumo:
Traffic congestion is an increasing problem with high costs in financial, social and personal terms. These costs include psychological and physiological stress, aggressivity and fatigue caused by lengthy delays, and increased likelihood of road crashes. Reliable and accurate traffic information is essential for the development of traffic control and management strategies. Traffic information is mostly gathered from in-road vehicle detectors such as induction loops. Traffic Message Chanel (TMC) service is popular service which wirelessly send traffic information to drivers. Traffic probes have been used in many cities to increase traffic information accuracy. A simulation to estimate the number of probe vehicles required to increase the accuracy of traffic information in Brisbane is proposed. A meso level traffic simulator has been developed to facilitate the identification of the optimal number of probe vehicles required to achieve an acceptable level of traffic reporting accuracy. Our approach to determine the optimal number of probe vehicles required to meet quality of service requirements, is to simulate runs with varying numbers of traffic probes. The simulated traffic represents Brisbane’s typical morning traffic. The road maps used in simulation are Brisbane’s TMC maps complete with speed limits and traffic lights. Experimental results show that that the optimal number of probe vehicles required for providing a useful supplement to TMC (induction loop) data lies between 0.5% and 2.5% of vehicles on the road. With less probes than 0.25%, little additional information is provided, while for more probes than 5%, there is only a negligible affect on accuracy for increasingly many probes on the road. Our findings are consistent with on-going research work on traffic probes, and show the effectiveness of using probe vehicles to supplement induction loops for accurate and timely traffic information.
Resumo:
By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4–5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.