922 resultados para ELECTRICAL-STIMULATION
Resumo:
Objectives: The use of noninvasive cortical electrical stimulation with weak currents has significantly increased in basic and clinical human studies. Initial, preliminary studies with this technique have shown encouraging results; however, the safety and tolerability of this method of brain stimulation have not been sufficiently explored yet. The purpose of our study was to assess the effects of direct current (DC) and alternating current (AC) stimulation at different intensities in order to measure their effects on cognition, mood, and electroencephalogram. Methods: Eighty-two healthy, right-handed subjects received active and sham stimulation in a randomized order. We conducted 164 ninety-minute sessions of electrical stimulation in 4 different protocols to assess safety of (1) anodal DC of the dorsolateral prefrontal cortex (DLPFC); (2) cathodal DC of the DLPFC; (3) intermittent anodal DC of the DLPFC and; (4) AC on the zygomatic process. We used weak currents of 1 to 2 mA (for DC experiments) or 0.1 to 0.2 mA (for AC experiment). Results: We found no significant changes in electroencephalogram, cognition, mood, and pain between groups and a low prevalence of mild adverse effects (0.11% and 0.08% in the active and sham stimulation groups, respectively), mainly, sleepiness and mild headache that were equally distributed between groups. Conclusions: Here, we show no neurophysiological or behavioral signs that transcranial DC stimulation or AC stimulation with weak currents induce deleterious changes when comparing active and sham groups. This study provides therefore additional information for researchers and ethics committees, adding important results to the safety pool of studies assessing the effects of cortical stimulation using weak electrical currents. Further studies in patients with neuropsychiatric disorders are warranted.
Resumo:
Recent studies have shown that the nociceptive withdrawal reflex threshold (NWR-T) and the electrical pain threshold (EP-T) are reliable measures in pain-free populations. However, it is necessary to investigate the reliability of these measures in patients with chronic pain in order to translate these techniques from laboratory to clinic. The aims of this study were to determine the test-retest reliability of the NWR-T and EP-T after single and repeated (temporal summation) electrical stimulation in a group of patients with chronic low back pain, and to investigate the association between the NWR-T and the EP-T. To this end, 25 patients with chronic pain participated in three identical sessions, separated by 1 week in average, in which the NWR-T and the EP-T to single and repeated stimulation were measured. Test-retest reliability was assessed using intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analysis. The association between the thresholds was assessed using the coefficient of determination (r (2)). The results showed good-to-excellent reliability for both NWR-T and EP-T in all cases, with average ICC values ranging 0.76-0.90 and average CV values ranging 12.0-17.7%. The association between thresholds was better after repeated stimulation than after single stimulation, with average r (2) values of 0.83 and 0.56, respectively. In conclusion, the NWR-T and the EP-T are reliable assessment tools for assessing the sensitivity of spinal nociceptive pathways in patients with chronic pain.
Resumo:
Although manual and electrical stimulation are frequently used in acupuncture analgesia, studies comparing both stimulation modalities are contradictory. This blinded, placebo-controlled cross-over study investigates effects of brief manual and electrical acupuncture stimulation on pressure pain detection thresholds (PPDT) compared with nonpenetrating sham acupuncture (NPSA).
Resumo:
Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.
Resumo:
Functional Electrical Stimulation (FES) is a technique that consists on applying electrical current pulses to artificially activate motor nerve fibers and produce muscle contractions to achieve functional movements. The main applications of FES are within the rehabilitation field, in which this technique is used to aid recovery or to restore lost motor functions. People that benefit of FES are usually patients with neurological disorders which result in motor dysfunctions; most common patients include stroke and spinal cord injury (SCI). Neuroprosthesis are devices that have their basis in FES technique, and their aim is to bridge interrupted or damaged neural paths between the brain and upper or lower limbs. One of the aims of neuroprosthesis is to artificially generate muscle contractions that produce functional movements, and therefore, assist impaired people by making them able to perform activities of daily living (ADL). FES applies current pulses and stimulates nerve fibers by means of electrodes, which can be either implanted or surface electrodes. Both of them have advantages and disadvantages. Implanted electrodes need open surgery to place them next to the nerve root, so these electrodes carry many disadvantages that are produced by the use of invasive techniques. In return, as the electrodes are attached to the nerve, they make it easier to achieve selective functional movements. On the contrary, surface electrodes are not invasive and are easily attached or detached on the skin. Main disadvantages of surface electrodes are the difficulty of selectively stimulating nerve fibers and uncomfortable feeling perceived by users due to sensory nerves located in the skin. Electrical stimulation surface electrode technology has improved significantly through the years and recently, multi-field electrodes have been suggested. This multi-field or matrix electrode approach brings many advantages to FES; among them it is the possibility of easily applying different stimulation methods and techniques. The main goal of this thesis is therefore, to test two stimulation methods, which are asynchronous and synchronous stimulation, in the upper limb with multi-field electrodes. To this end, a purpose-built wrist torque measuring system and a graphic user interface were developed to measure wrist torque produced with each of the methods and to efficiently carry out the experiments. Then, both methods were tested on 15 healthy subjects and sensitivity results were analyzed for different cases. Results show that there are significant differences between methods regarding sensation in some cases, which can affect effectiveness or success of FES.
Resumo:
Paralysis is a debilitating condition afflicting millions of people across the globe, and is particularly deleterious to quality of life when motor function of the legs is severely impaired or completely absent. Fortunately, spinal cord stimulation has shown great potential for improving motor function after spinal cord injury and other pathological conditions. Many animal studies have shown stimulation of the neural networks in the spinal cord can improve motor ability so dramatically that the animals can even stand and step after a complete spinal cord transaction.
This thesis presents work to successfully provide a chronically implantable device for rats that greatly enhances the ability to control the site of spinal cord stimulation. This is achieved through the use of a parylene-C based microelectrode array, which enables a density of stimulation sites unattainable with conventional wire electrodes. While many microelectrode devices have been proposed in the past, the spinal cord is a particularly challenging environment due to the bending and movement it undergoes in a live animal. The developed microelectrode array is the first to have been implanted in vivo while retaining functionality for over a month. In doing so, different neural pathways can be selectively activated to facilitate standing and stepping in spinalized rats using various electrode combinations, and important differences in responses are observed.
An engineering challenge for the usability of any high density electrode array is connecting the numerous electrodes to a stimulation source. This thesis develops several technologies to address this challenge, beginning with a fully passive implant that uses one wire per electrode to connect to an external stimulation source. The number of wires passing through the body and the skin proved to be a hazard for the health of the animal, so a multiplexed implant was devised in which active electronics reduce the number of wires. Finally, a fully wireless implant was developed. As these implants are tested in vivo, encapsulation is of critical importance to retain functionality in a chronic experiment, especially for the active implants, and it was achieved without the use of costly ceramic or metallic hermetic packaging. Active implants were built that retained functionality 8 weeks after implantation, and achieved stepping in spinalized rats after just 8-10 days, which is far sooner than wire-based electrical stimulation has achieved in prior work.
Resumo:
La contribution de la neurotransmission dopaminergique dans le noyau accumbens à l’effet de récompense induit par la stimulation électrique du cerveau a été l’objet de plusieurs années de recherche. Cependant, d’autres sites recevant des terminaisons dopaminergiques pourraient contribuer à moduler la récompense dans d’autres régions cérébrales. Parmi elles, on retrouve l’habenula qui reçoit des projections dopaminergiques de l’aire tegmentale ventrale. La contribution de cette voie au phénomène de récompense en général et à l’effet de recompense induit par l’autostimulation intracrânienne est peu connue. Le but de cette recherche était d’étudier la contribution de la dopamine mésohabenulaire à l’effet de recompense induit par la stimulation électrique du raphé dorsal. Des rats ont été implantés d’une bicanule dans l’Hb et d’une électrode dans le raphé dorsal. Le paradigme du déplacement de la courbe a été utilisé pour évaluer les changements dans l’effet de récompense à la suite de l’injection intra-habenulaire d’amphétamine (10-40 μg). À titre de contrôles positifs, des rats ont reçu l’amphétamine dans le core et dans le shell (1-20 μg) du noyau accumbens. Les injections d’amphétamine dans l’habenula n’ont pas changé l’effet de récompense induit par la stimulation électrique. Dans le noyau accumbens, les injections dans le shell et le core provoquent des augmentations dans l’effet de récompense comme il a déjà été démontré. Nos résultats suggèrent que la neurotransmission dopaminergique dans l’habenula latérale ne contribue pas significativement au circuit soutenant l’effet renforçant de la stimulation électrique du cerveau.
Resumo:
La voie dopaminergique mésolimbique qui prend son origine dans le mésencéphale ventral et qui projette vers des régions rostrales du système limbique fait partie du substrat nerveux qui contrôle la récompense et les comportements motivés. Il a été suggéré qu’un signal de récompense est produit lorsque le patron de décharge des neurones dopaminergiques passe d’un mode tonique à un mode phasique, une transition qui est initiée par l’action du glutamate aux récepteurs N-Méthyl-D-aspartate (NMDA). Étant donné qu’une altération du système de récompense est souvent associée à des anomalies cliniques telles que l’addiction compulsive et à des troubles émotionnels tels que l’anhédonie, nous avons étudié le rôle des récepteurs NMDA dans la récompense induite par la stimulation électrique intracérébrale. Puisque les récepteurs NMDA sont composés de sous-unités distinctes, GluN1, GluN2 et GluN3, nous avons étudié le rôle de deux sous-unités qui sont présentes dans le mésencéphale ventral : GluN2A et GluN2B. Les résultats montrent que des injections mésencéphaliques de R-CPP et de PPPA, des antagonistes préférentiels aux sous-unités GluN2A/B, ont produit une augmentation dose-dépendante de l’effet de récompense, un effet qui était, à certains temps après les injections, accompagné d’une augmentation du nombre de réponses maximales. Ces effets n’ont pas été observés après l’injection d’une large gamme de doses de Ro04-5595, un antagoniste des sous-unités GluN2B. Ces résultats suggèrent que le glutamate mésencéphalique exerce une modulation négative sur le circuit de récompense, un effet dû à son action au niveau des récepteurs NMDA composés des sous-unités GluN2A.
Resumo:
La stimulation électrique directe (SED), pour une heure, améliore la régénération de nerfs périphériques chez le rat après la réparation. Cliniquement, ceci augmenterait le temps opératoire, rehaussant les risques de complications périopératoires. Objectif: Cette étude examine si la stimulation électrique transcutanée (SETC) est aussi efficace à améliorer la régénération de nerfs périphériques que la stimulation électrique directe. Méthode: Le nerf sciatique droit de 28 souris a été axotomisé. Une réparation par microsuture est effectuée. Quatre groupes sont étudiés : (1) sham; (2) suture seulement; (3) suture et SED; (4) suture et SETC. La stimulation est appliquée pour 1 heure à 20 Hz. Les souris sont étudiées pour un total de 12 semaines. La récupération sciatique est évaluée aux semaines 0, 1, 2 et aux 2 semaines par la suite par analyse de démarche sur la poutre. Résultats: La cinématique post-récupération démontre un index fonctionnel sciatique et angle de décollement significativement améliorés pour les groupes SED et SETC aux semaines 8, 10 et 12. Conclusions: 12 semaines après l’axotomie du nerf sciatique, la récupération fonctionnelle est significativement améliorée avec la SED et la SETC. Donc, la SETC est aussi bénéfique pour la promotion de la régénération nerveuse et réinnervation musculaire fonctionnelle que la SED.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
This paper details an investigation into sensory substitution by means of direct electrical stimulation of the tongue for the purpose of information input to the human brain. In particular, a device has been constructed and a series of trials have been performed in order to demonstrate the efficacy and performance of an electro-tactile array mounted onto the tongue surface for the purpose of sensory augmentation. Tests have shown that by using a low resolution array a computer-human feedback loop can be successfully implemented by humans in order to complete tasks such as object tracking, surface shape identification and shape recognition with no training or prior experience with the device. Comparisons of this technique have been made with visual alternatives and these show that the tongue based tactile array can match such methods in convenience and accuracy in performing simple tasks.
Resumo:
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Effects of meperidine or saline on thermal, mechanical and electrical nociceptive thresholds in cats
Resumo:
Objective To measure cutaneous electrical nociceptive thresholds in relation to known thermal and mechanical stimulation for nociceptive threshold detection in cats.Study design Prospective, blinded, randomized cross-over study with 1-week washout interval.Animals Eight adult cats [bodyweight 5.1 +/- 1.8 kg (mean + SD)].Methods Mechanical nociceptive thresholds were tested using a step-wise manual inflation of a modified blood pressure bladder attached to the cat's thoracic limb. Thermal nociceptive thresholds were measured by increasing the temperature of a probe placed on the thorax. The electrical nociceptive threshold was tested using an escalating current from a constant current generator passed between electrodes placed on the thoracic region. A positive response (threshold) was recorded when cats displayed any or all of the following behaviors: leg shake, head turn, avoidance, or vocalization. Four baseline readings were performed before intramuscular injection of meperidine (5 mg kg(-1)) or an equal volume of saline. Threshold recordings with each modality were made at 15, 30, 45, 60, 90, and 120 minutes post-injection. Data were analyzed using ANOVA and paired t-tests (significance at p < 0.05).Results There were no significant changes in thermal, mechanical, or electrical thresholds after saline. Thermal thresholds increased at 15-60 minutes (p < 0.01) and mechanical threshold increased at 30 and 45 minutes after meperidine (p < 0.05). Maximum thermal threshold was +4.1 +/- 0.3 degrees C above baseline at 15 minutes while maximum mechanical threshold was 296 +/- 265 mmHg above baseline at 30 minutes after meperidine. Electrical thresholds following meperidine were not significantly different than baseline (p > 0.05). Thermal and electrical thresholds after meperidine were significantly higher than saline at 30 and 45 minutes (p < 0.05), and at 120 minutes (p < 0.05), respectively. Mechanical thresholds were significantly higher than saline treatment at 30 minutes (p <= 0.05).Conclusion and clinical relevance Electrical stimulation did not detect meperidine analgesia whereas both thermal and mechanical thresholds changed after meperidine administration in cats.
Resumo:
Objective-To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.Animals-8 adult cats.Procedures-On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 mu g/kg/min,IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (>= 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).Results-In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 mu g of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 mu g of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 mu g/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.Conclusions and Clinical Relevance-Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 mu g/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.
Resumo:
Purpose. Evaluated the effects of continuous electrical current (CEC) or zinc administrated by transdermal iontophoresis (Zn+TDI). Methods. 120 male Wistar rats were submitted to an incision surgery at the anterior region of abdomen and distributed into 6 experimental groups with 40 animals: 3 diabetic groups and 3 normal groups, untreated and treated with CEC alone or with Zn+TDI. Each group was further divided into 4 subgroups with 10 rats each to be evaluated on the 4th, 7th, 14th, and 21st day after surgery. In each period, clinical and laboratory parameters from the animals were analyzed. Results. The analysis by optical and scanning electron microscopy showed a delay in the phases of wound healing in diabetic rats without treatment in all periods of the experiment; breaking strength (BS) was significantly reduced in skin scars of untreated diabetic rats when compared to other groups. In contrast, BS in skin scars of nondiabetic groups and diabetic rats treated with Zn+TDI showed significant increase in those, besides not presenting delayed healing. Conclusion. Electrical stimulation of surgical wounds used alone or in association with zinc by TDI is able to consistently improve the morphological and ultrastructural changes observed in the healing of diabetic animals.