966 resultados para ELASTIC-PLASTIC SOLIDS
Resumo:
Rigorous elastic-plastic finite element analysis of joints subjected to cyclic loading is carried out. An incremental-iterative algorithm is developed in a modular form combining elasto-plastic material behaviour and contact stress analysis. For the case of the interference fit, the analysis sequentially carries out insertion of the pin and application of the load on the joint, covering possible initiation of separation (and/or yielding) and progressively the receding/advancing contact at the pin-plate interface. Deformations of both the plate and the pin are considered in the analysis. Numerical examples are presented for the case of an interference fit pin in a large plate under remote cyclic tension, and for an interference fit pin lug joint subjected to cyclic loading. A detailed study is carried out for the latter problem considering the effect of change in contact/separation at the pin-plate interface on local stresses, strains and redistribution of these stresses with the spread of a plastic zone. The results of the study are a useful input for the estimation of the fatigue life of joints. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The subsurface microhardness mapping technique of Chaudhri was utilized to determine the shape, size and distribution of plastic strain underneath conical indenters of varying semi-apex angles, alpha (55 degrees, 65 degrees and 75 degrees). Results show that the elastic-plastic boundary under the indenters is elliptical in nature, contradicting the expanding cavity model, and the ellipticity increases with alpha. The maximum plastic strain immediately under the indenter was found to decrease with increasing alpha. Complementary finite-element analysis was conducted to examine the ability of simulations to capture the experimental observations. A comparison of computational and experimental results indicates that the plastic strain distributions as well as the maximum strains immediately beneath the indenter do not match, suggesting that simulation of sharp indentation requires further detailed studies for complete comprehension. Representative strains, epsilon(r), evaluated as the volume-average strains within the elastic-plastic boundary, decrease with increasing alpha and are in agreement with those estimated by using the dimensional analysis. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.
Resumo:
Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs
Resumo:
Several experimental studies have shown that fracture surfaces in brittle metallic glasses (MGs) generally exhibit nanoscale corrugations which may be attributed to the nucleation and coalescence of nanovoids during crack propagation. Recent atomistic simulations suggest that this phenomenon is due to large spatial fluctuations in material properties in a brittle MG, which leads to void nucleation in regions of low atomic density and then catastrophic fracture through void coalescence. To explain this behavior, we propose a model of a heterogeneous solid containing a distribution of weak zones to represent a brittle MG. Plane strain continuum finite element analysis of cavitation in such an elastic-plastic solid is performed with the weak zones idealized as periodically distributed regions having lower yield strength than the background material. It is found that the presence of weak zones can significantly reduce the critical hydrostatic stress for the onset of cavitation which is controlled uniquely by the local yield properties of these zones. Also, the presence of weak zones diminishes the sensitivity of the cavitation stress to the volume fraction of a preexisting void. These results provide plausible explanations for the observations reported in recent atomistic simulations of brittle MGs. An analytical solution for a composite, incompressible elastic-plastic solid with a weak inner core is used to investigate the effect of volume fraction and yield strength of the core on the nature of cavitation bifurcation. It is shown that snap-cavitation may occur, giving rise to sudden formation of voids with finite size, which does not happen in a homogeneous plastic solid. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A dimensionless number, termed as response number in Zhao [Archive of Applied Mechanics 68 (1998) 524], has been suggested for the dynamic plastic response of beams and plates made up of rigidly perfect plastic materials subjected to dynamic loading. Many theoretical and experimental results can be reformulated into new concise forms with the response number. The concept of a new dimensionless number, response number, termed as Rn(n), is generalized in Zhao [Forschung im Ingenieurwesen 65 (1999) 107] to study the elastic, plastic, dynamic elastic as well as dynamic plastic buckling problems of columns, plates as well as shells. The response number Rn(n) is generalized to the dynamic behaviour of shells of various shapes in the present paper.
Resumo:
The effects of indenter tip rounding on the shape of indentation loading curves have been analyzed using dimensional and finite element analysis for conical indentation in elastic-perfectly plastic solids. A method for obtaining mechanical properties from indentation loading curves is then proposed. The validity of this method is examined using finite element analysis. Finally, the method is used to determine the yield strength of several materials for which the indentation loading curves are available in the literature.
Resumo:
Using dimensional analysis and finite-element calculations we determine the functional form of indentation loading curves for a rigid conical indenter indenting into elastic-perfectly plastic solids. The new results are compared with the existing theories of indentation using conical indenters, including the slip-line theory for rigid-plastic solids, Sneddon's result for elastic solids, and Johnson's model for elastic-perfectly plastic solids. In the limit of small ratio of yield strength (Y) to Young's modulus (E), both the new results and Johnson's model approach that predicted by slip-line theory for rigid-plastic solids. In the limit of large Y/E, the new results agree with that for elastic solids. For a wide range of Y/E, some difference is found between Johnson's model-and the present result. This study also demonstrates the possibilities and limitations of using indentation loading curves to extract fundamental mechanical properties of solids.
Resumo:
The constrained deformation of an aluminium alloy foam sandwiched between steel substrates has been investigated. The sandwich plates are subjected to through-thickness shear and normal loading, and it is found that the face sheets constrain the foam against plastic deformation and result in a size effect: the yield strength increases with diminishing thickness of foam layer. The strain distribution across the foam core has been measured by a visual strain mapping technique, and a boundary layer of reduced straining was observed adjacent to the face sheets. The deformation response of the aluminium foam layer was modelled by the elastic-plastic finite element analysis of regular and irregular two dimensional honeycombs, bonded to rigid face sheets; in the simulations, the rotation of the boundary nodes of the cell-wall beam elements was set to zero to simulate full constraint from the rigid face sheets. It is found that the regular honeycomb under-estimates the size effect whereas the irregular honeycomb provides a faithful representation of both the observed size effect and the observed strain profile through the foam layer. Additionally, a compressible version of the Fleck-Hutchinson strain gradient theory was used to predict the size effect; by identifying the cell edge length as the relevant microstructural length scale the strain gradient model is able to reproduce the observed strain profiles across the layer and the thickness dependence of strength. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An elastic-plastic constitutive model for transversely isotropic compressible solids (foams) has been developed. A quadratic yield surface with four parameters and one hardening function is proposed. Associated plastic flow is assumed and the yield surface evolves in a self-similar manner calibrated by the uniaxial compressive (or tensile) response of the cellular solid in the axial direction. All material constants in the model (elastic and plastic) can be determined from a combination of a total of four uniaxial and shear tests. The model is used to predict the indentation response of balsa wood to a conical indenter. For the three cone angles considered in this study, very good agreement is found between the experimental measurements and the finite element (FE) predictions of the transversely isotropic cellular solid model. On the other hand, an isotropic foam model is shown to be inadequate to capture the indentation response. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.
Resumo:
Finite element analysis is employed to investigate void growth embedded in elastic-plastic matrix material. Axisymmetric and plane stress conditions are considered. The simulation of void growth in a unit cell model is carried out over a wide range of triaxial tensile stressing or large plastic straining for various strain hardening materials to study the mechanism of void growth in ductile materials. Triaxial tension and large plastic strain encircling around the void are found to be of most importance for driving void growth. The straining mode of incremental loading which favors the necessary strain concentration around void for its growth can be characterized by the vanishing condition of a parameter called "the third invariant of generalized strain rate". Under this condition, it accentuates the internal strain concentration and the strain energy stored/dissipated within the material layer surrounding the void. Experimental results are cited to justify the effect of this loading parameter. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The technology of laser quenching is widely used to improve the surface properties of steels in surface engineering. Generally, laser quenching of steels can lead to two important results. One is the generation of residual stress in the surface layer. In general, the residual stress varies from the surface to the interior along the quenched track depth direction, and the residual stress variation is termed as residual stress gradient effect in this work. The other is the change of mechanical properties of the surface layer, such as the increases of the micro-hardness, resulting from the changes of the microstructure of the surface layer. In this work, a mechanical model of a laser-quenched specimen with a crack in the middle of the quenched layer is developed to quantify the effect of residual stress gradient and the average micro-hardness over the crack length on crack tip opening displacement (CTOD). It is assumed that the crack in the middle of the quenched layer is created after laser quenching, and the crack can be a pre-crack or a defect due to some reasons, such as a void, cavity or a micro-crack. Based on the elastic-plastic fracture mechanics theory and using the relationship between the micro-hardness and yield strength, a concise analytical solution, which can be used to quantify the effect of residual stress gradient and the average micro-hardness over the crack length resulting from laser quenching on CTOD, is obtained. The concise analytical solution obtained in this work, cannot only be used as a means to predict the crack driving force in terms of the CTOD, but also serve as a baseline for further experimental investigation of the effect after laser-quenching treatment on fracture toughness in terms of the critical CTOD of a specimen, accounting for the laser-quenching effect. A numerical example presented in this work shows that the CTOD of the quenched can be significantly decreased in comparison with that of the unquenched. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper the influence of contact geometry, including the round tip of the indenter and the roughness of the specimen, on hardness behavior for elastic plastic materials is studied by means of finite element simulation. We idealize the actual indenter by an equivalent rigid conic indenter fitted smoothly with a spherical tip and examine the interaction of this indenter with both a flat surface and a rough surface. In the latter case the rough surface is represented by either a single spherical asperity or a dent (cavity). Indented solids include elastic perfectly plastic materials and strain hardening elastic-plastic materials, and the effects of the yield stress and strain hardening index are explored. Our results show that due to the finite curvature of the indenter tip the hardness versus indentation depth curve rises or drops (depending on the material properties of the indented solids) as the indentation depth decreases, in qualitative agreement with experimental results. Surface asperities and dents of curvature comparable to that of the indenter tip can appreciably modify the hardness value at small indentation depth. Their effects would appear as random variation in hardness.
Resumo:
Sponsorship: EPSRC