82 resultados para ELASMOBRANCH
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The feeding behaviour and the swimming pattern of the reef manta (Manta alfredi) are described based on video recordings conducted in Sudan, Red Sea, Indian Ocean, during June 2001. Three circular swimming patterns are described: horizontal circle pattern, inclined circle pattern and double circle pattern, related to feedings on zooplankton distributed in the water column. The observation of circle-like swimming patterns for reef manta rays in shallow waters expands our knowledge about M. alfredi and suggests that the distribution and abundance of zooplankton influence the occurrence and group size of this species in the studied area, as reported from other localities for Manta species.
Resumo:
The community structure and dynamics as well as some biological parameters of selected species of the ichthyofauna of the Mataripe estuarine region affected by the Landulfo Alves Oil Refinery (RLAM) were analyzed. Twenty stations were sampled with a gillnet in five different periods: August and December 2003, March and July/August 2004 and January 2005. Thirty-five actinopterygian species and one elasmobranch species were recorded, Oligoplites saurus, Diapterus rhombeus, Lutjanus synagris and Scomberomorus brasiliensis among them, on all the campaigns. A total of 1368 specimens, weighing 36.10 kg, were caught. The ichthyofauna total biomass was greater, in weight, on the eastern side of the study region, especially at the stations close to the shoals/reefs and the rocky bottom. A similar pattern was also observed for the diversity values. In general, low evenness and diversity were observed in the area studied, possibly as a result of the fishing gear used. D. rhombeus juveniles dominated in all but one of the samplings (July 2004), in which latter Cyclichthys spinosus was dominant. Carangids and species associated with consolidated bottoms were observed, although in small numbers, throughout the study period. In spite of the limitations imposed by the gear used for sampling, the estuarine area influenced by the RLAM was seen to play a role as a growth area for the great majority of species, especially the mojarra (D. rhombeus), but it offers no fishing potential due to the prevalence of young and small individuals. Evidence of imminent spawning was recorded for Pomadasys corvinaeformis in August 2003, and recent spawning in March 2004 for Oligoplites saurus. Further, mature individuals occurred in insufficient numbers to permit population level evaluation.
Resumo:
This study provides the first detailed information on the reproductive biology of the smooth butterfly ray Gymnura micrura. A total of 905 individuals were sampled, 377 of which were used for the reproductive study. Juveniles accounted for 75% of the sample, but all life cycle stages were present in the study area. The disc width at which 50% were mature (WD50)was estimated at 269 and 405 mm for males and females, respectively. The WD50V(based on the onset of vitellogenesis) was estimated at 359 mm. Uterine fecundity (mean +/- s.d. = 3.8 +/- 1.3; range: 16) was positively correlated with female size. A 3564% gain in mean wet mass was observed from egg to full-term embryo in utero. Size at birth ranged from 135 to 175 mm WD (19.5 to 55.0 g), with a mean of 165.1 mm WD (43.3 g). The embryo sex ratio was not significantly different from 1:1. The ovaries of pregnant females were undergoing vitellogenesis during gestation, with females ready to ovulate soon after parturition. Gymnura micrura may have an asynchronous reproductive cycle, with females reproducing continuously throughout the year.
Resumo:
O pacu, Piaractus mesopotamicus, é um teleósteo da Família Characidae, intensivamente cultivado no Brasil devido sua rusticidade, crescimento rápido e fácil adaptação. O conhecimento morfológico dos sistemas corpóreos, incluído órgãos linfóide, se faz necessário, para uma melhor produção no cultivo de peixes, fornecendo subsídios na manutenção dos estoques. O objetivo deste estudo foi descrever morfologicamente o rim e rim cefálico de Piaractus mesopotamicus, analisando os perfis celulares de cada órgão com o uso de microscopia de luz e microscopia eletrônica de transmissão. O resultado da análise macroscópica mostrou que a localização do rim e rim cefálico são as mesmas encontradas na maioria dos teleósteos. O rim apresentou uma forma em "H", onde a região média se expandia sobre a bexiga natatória. O rim cefálico se apresentou como uma dilatação na região cranial do rim, mostrando-se bem visível. Na microscopia eletrônica de transmissão também foram observadas similaridades ultraestruturais com outros teleósteos. Observando nossos resultados concluímos que histologicamente e ultraestruturalmente, os órgãos linfóides rim e rim cefálico de Piaractus mesopotamicus são similares aos de outros teleósteos.
Resumo:
A new genus and species of diphyllidean, Ahamulina catarina n. gen. n. sp., is described from the polkadot catshark, Scyliorhinus besnardi, from Santa Catarina, Brazil. The new genus exhibits apical organ armature that is unique among diphyllideans in the arrangement and shape of the apical hooks as well as in the lack of lateral hooklets. The taxon also exhibits a bipartite cirrus sac. This is the seventh diphyllidean reported from a shark, and the third reported from a catshark suggesting that the dearth of cestode data for these particular sharks belies the true extent of diphyllidean diversity they host.
Resumo:
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix–loop–helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
Resumo:
While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.
Resumo:
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
Passive electroreception is a complex and specialised sense found in a large range of aquatic vertebrates primarily designed for the detection of weak bioelectric fields. Particular attention has traditionally focused on cartilaginous fishes, but a range of teleost and non-teleost fishes from a diversity of habitats have also been examined. As more species are investigated, it has become apparent that the role of electroreception in fishes is not restricted to locating prey, but is utilised in other complex behaviours. This paper presents the various functional roles of passive electroreception in non-electric fishes, by reviewing much of the recent research on the detection of prey in the context of differences in species' habitat (shallow water, deep-sea, freshwater and saltwater). A special case study on the distribution and neural groupings of ampullary organs in the omnihaline bull shark, Carcharhinus leucas, is also presented and reveals that prey-capture, rather than navigation, may be an important determinant of pore distribution. The discrimination between potential predators and conspecifics and the role of bioelectric stimuli in social behaviour is discussed, as is the ability to migrate over short or long distances in order to locate environmentally favourable conditions. The various theories proposed regarding the importance and mediation of geomagnetic orientation by either an electroreceptive and/or a magnetite-based sensory system receives particular attention. The importance of electroreception to many species is emphasised by highlighting what still remains to be investigated, especially with respect to the physical, biochemical and neural properties of the ampullary organs and the signals that give rise to the large range of observed behaviours.
Resumo:
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.
Resumo:
The Australian lungfish, Neoceratodus forsteri, has a dentition consisting of enamel, mantle dentine and bone, enclosing circumdenteonal, core and interdenteonal dentines. Branching processes from cells that produce interdenteonal dentine leave the cell surface at different angles, with collagen fibrils aligned parallel to the long axis of each process. In the interdenteonal dentine, crystals of calcium hydroxyapatite, form within fibrils of collagen, and grow within a matrix of non-collagenous protein. Crystals are aligned parallel to the cell process, as are the original collagen fibrils. Because the processes are angled to the cell surface, the crystals within the core or interdenteonal dentine are arranged in bundles set at angles to each other. Apatite crystals in circumdenteonal dentine are finer and denser than those of the interdenteonal dentine, and form outside the fibrils of collagen. In mature circumdenteonal dentine the crystals of circumdenteonal dentine form a dense tangled mass, linked to interdenteonal dentine by isolated crystals. The functional lungfish tooth plate contains prisms of large apatite crystals in the interdenteonal dentine and masses of fine tangled crystals around each denteon. This confers mechanical strength on a structure with little enamel that is subjected to heavy wear. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Worldwide declines in populations of large elasmobranchs and the potential cascading effects on marine ecosystems have garnered considerable attention. Far less appreciated are the potential ecological impacts of changes in abundances of small to medium bodied elasmobranchs mesopredators. Crucial to elucidating the role of these elasmobranchs is an understanding of their habitat use and foraging ecology in pristine conditions. I investigated the trophic interactions and factors driving spatiotemporal variation in abundances of elasmobranch mesopredators in the relatively pristine ecosystem of Shark Bay, Australia. First, I describe the species composition and seasonal habitat use patterns of elasmobranch mesopredator on the sandflats of Shark Bay. Juvenile batoids dominated this diverse community and were extremely abundant in nearshore microhabitats during the warm season. Stomach content analysis and stable isotopic analysis revealed that there is a large degree of dietary overlap between common batoid species. Crustaceans, which tend to be found in seagrass habitats, dominated diets. Despite isotopic differences between many species, overlap in isotopic niche space was high and there was some degree of individual specialization. I then, investigated the importance of abiotic (temperature and water depth) and biotic (prey and predator abundance) factors in shaping batoid habitat use. Batoids were most abundant and tended to rest in shallow nearshore waters when temperatures were high. This pattern coincides with periods of large shark abundance suggesting batoids were seeking refuge from predators rather than selecting optimal temperatures. Finally, I used acoustic telemetry to examine batoid residency and diel use of the sandflats. Individual batoids were present on the sandflats during both the warm and cold seasons and throughout the diel cycle, suggesting lower sandflat densities during the cold season were a result of habitat shifts rather than migration out of Shark Bay. Combined, habitat use and dietary results suggest that batoids have the potential to seasonally impact sandflat dynamics through their presence, although foraging may be limited on the sandflats. Interestingly, my results suggest that elasmobranch mesopredators in pristine ecosystems probably are not regulated by food supply and their habitat use patterns and perhaps ecosystem impacts may be influenced by their predators.
Resumo:
Whereas many land predators disappeared before their ecological roles were studied, the decline of marine apex predators is still unfolding. Large sharks in particular have experienced rapid declines over the last decades. In this study, we review the documented changes in exploited elasmobranch communities in coastal, demersal, and pelagic habitats, and synthesize the effects of sharks on their prey and wider communities. We show that the high natural diversity and abundance of sharks is vulnerable to even light fishing pressure. The decline of large predatory sharks reduces natural mortality in a range of prey, contributing to changes in abundance, distribution, and behaviour of small elasmobranchs, marine mammals, and sea turtles that have few other predators. Through direct predation and behavioural modifications, top-down effects of sharks have led to cascading changes in some coastal ecosystems. In demersal and pelagic communities, there is increasing evidence of mesopredator release, but cascading effects are more hypothetical. Here, fishing pressure on mesopredators may mask or even reverse some ecosystem effects. In conclusion, large sharks can exert strong top-down forces with the potential to shape marine communities over large spatial and temporal scales. Yet more empirical evidence is needed to test the generality of these effects throughout the ocean.