74 resultados para EKF
Resumo:
Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.
Resumo:
Als die Journalistin Laura Himmelreich Anfang 2013 unter dem Titel «Der Herrenwitz» ihre Erlebnisse mit dem deutschen FDP-Politiker Rainer Brüderle im «Stern»1 veröffentlicht, ist ihr kaum bewusst, welch breite Diskussion ihr Artikel in Deutschland und der Schweiz auslösen wird. Die daraufhin einsetzende sogenannte Sexismusdebatte bringt alte Fragen und neue Erkenntnisse aufs Tapet.
Resumo:
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
Resumo:
The main problem of pedestrian dead-reckoning (PDR) using only a body-attached inertial measurement unit is the accumulation of heading errors. The heading provided by magnetometers in indoor buildings is in general not reliable and therefore it is commonly not used. Recently, a new method was proposed called heuristic drift elimination (HDE) that minimises the heading error when navigating in buildings. It assumes that the majority of buildings have their corridors parallel to each other, or they intersect at right angles, and consequently most of the time the person walks along a straight path with a heading constrained to one of the four possible directions. In this article we study the performance of HDE-based methods in complex buildings, i.e. with pathways also oriented at 45°, long curved corridors, and wide areas where non-oriented motion is possible. We explain how the performance of the original HDE method can be deteriorated in complex buildings, and also, how severe errors can appear in the case of false matches with the building's dominant directions. Although magnetic compassing indoors has a chaotic behaviour, in this article we analyse large data-sets in order to study the potential use that magnetic compassing has to estimate the absolute yaw angle of a walking person. Apart from these analysis, this article also proposes an improved HDE method called Magnetically-aided Improved Heuristic Drift Elimination (MiHDE), that is implemented over a PDR framework that uses foot-mounted inertial navigation with an extended Kalman filter (EKF). The EKF is fed with the MiHDE-estimated orientation error, gyro bias corrections, as well as the confidence over that corrections. We experimentally evaluated the performance of the proposed MiHDE-based PDR method, comparing it with the original HDE implementation. Results show that both methods perform very well in ideal orthogonal narrow-corridor buildings, and MiHDE outperforms HDE for non-ideal trajectories (e.g. curved paths) and also makes it robust against potential false dominant direction matchings.
Resumo:
We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m.
Resumo:
En el ámbito de la robótica de servicio, actualmente no existe una solución automatizada para la inspección ultrasónica de las partes de material compuesto de una aeronave durante las operaciones de mantenimiento que realiza la aerolínea. El desarrollo de las nuevas técnicas de acoplamiento acústico en seco en el método de inspección no destructiva por ultrasonidos, está conduciendo a posibilitar su uso con soluciones de menor coste respecto a las técnicas tradicionales, sin perder eficacia para detectar las deficiencias en las estructuras de material compuesto. Aunque existen aplicaciones de esta técnica con soluciones manuales, utilizadas en las fases de desarrollo y fabricación del material compuesto, o con soluciones por control remoto en sectores diferentes al aeronáutico para componentes metálicos, sin embargo, no existen con soluciones automatizadas para la inspección no destructiva por ultrasonidos de las zonas del avión fabricadas en material compuesto una vez la aeronave ha sido entregada a la aerolínea. El objetivo de este trabajo fin de master es evaluar el sistema de localización, basado en visión por ordenador, de una solución robotizada aplicada la inspección ultrasónica estructural de aeronaves en servicio por parte de las propias aerolíneas, utilizando las nuevas técnicas de acoplamiento acústico en seco, buscando la ventaja de reducir los tiempos y los costes en las operaciones de mantenimiento. Se propone como solución un robot móvil autónomo de pequeño tamaño, con control de posición global basado en técnicas de SLAM Visual Monocular, utilizando marcadores visuales externos para delimitar el área de inspección. Se ha supuesto la inspección de elementos de la aeronave cuya superficie se pueda considerar plana y horizontal, como son las superficies del estabilizador horizontal o del ala. Este supuesto es completamente aceptable en zonas acotadas de estos componentes, y de cara al objetivo del proyecto, no le resta generalidad. El robot móvil propuesto es un vehículo terrestre triciclo, de dos grados de libertad, con un sistema de visión monocular completo embarcado, incluyendo el hardware de procesamiento de visión y control de trayectoria. Las dos ruedas delanteras son motrices y la tercera rueda, loca, sirve únicamente de apoyo. La dirección, de tipo diferencial, permite al robot girar sin necesidad de desplazamiento, al conseguirse por diferencia de velocidad entre la rueda motriz derecha e izquierda. El sistema de inspección ultrasónica embarcado está compuesto por el hardware de procesamiento y registro de señal, y una rueda-sensor situada coaxialmente al eje de las ruedas motrices, y centrada entre estas, de modo que la medida de inspección se realiza en el centro de rotación del robot. El control visual propuesto se realiza mediante una estrategia “ver y mover” basada en posición, ejecutándose de forma secuencial la extracción de características visuales de la imagen, el cálculo de la localización global del robot mediante SLAM visual y el movimiento de éste mediante un algoritmo de control de posición-orientación respecto a referencias de paso de la trayectoria. La trayectoria se planifica a partir del mapa de marcas visuales que delimitan el área de inspección, proporcionado también por SLAM visual. Para validar la solución propuesta se ha optado por desarrollar un prototipo físico tanto del robot como de los marcadores visuales externos, a los que se someterán a una prueba de validación como alternativa a utilizar un entorno simulado por software, consistente en el reconocimiento del área de trabajo, planeamiento de la trayectoria y recorrido de la misma, de forma autónoma, registrando el posicionamiento real del robot móvil junto con el posicionamiento proporcionado por el sistema de localización SLAM. El motivo de optar por un prototipo es validar la solución ante efectos físicos que son muy complicados de modelar en un entorno de simulación, derivados de las limitaciones constructivas de los sistemas de visión, como distorsiones ópticas o saturación de los sensores, y de las limitaciones constructivas de la mecánica del robot móvil que afectan al modelo cinemático, como son el deslizamiento de las ruedas o la fluctuación de potencia de los motores eléctricos. El prototipo de marcador visual externo utilizado para la prueba de validación, ha sido un símbolo plano vertical, en blanco y negro, que consta de un borde negro rectangular dentro del cual se incluye una serie de marcas cuadradas de color negro, cuya disposición es diferente para cada marcador, lo que permite su identificación. El prototipo de robot móvil utilizado para la prueba de validación, ha sido denominado VINDUSTOR: “VIsual controlled Non-Destructive UltraSonic inspecTOR”. Su estructura mecánica ha sido desarrollada a partir de la plataforma comercial de robótica educacional LEGO© MINDSTORMS NXT 2.0, que incluye los dos servomotores utilizados para accionar las dos ruedas motrices, su controlador, las ruedas delanteras y la rueda loca trasera. La estructura mecánica ha sido especialmente diseñada con piezas LEGO© para embarcar un ordenador PC portátil de tamaño pequeño, utilizado para el procesamiento visual y el control de movimiento, y el sistema de captación visual compuesto por dos cámaras web de bajo coste, colocadas una en posición delantera y otra en posición trasera, con el fin de aumentar el ángulo de visión. El peso total del prototipo no alcanza los 2 Kg, siendo sus dimensiones máximas 20 cm de largo, 25 cm de ancho y 26 cm de alto. El prototipo de robot móvil dispone de un control de tipo visual. La estrategia de control es de tipo “ver y mover” dinámico, en la que se realiza un bucle externo, de forma secuencial, la extracción de características en la imagen, la estimación de la localización del robot y el cálculo del control, y en un bucle interno, el control de los servomotores. La estrategia de adquisición de imágenes está basada en un sistema monocular de cámaras embarcadas. La estrategia de interpretación de imágenes está basada en posición tridimensional, en la que los objetivos de control se definen en el espacio de trabajo y no en la imagen. La ley de control está basada en postura, relacionando la velocidad del robot con el error en la posición respecto a las referencias de paso de una trayectoria. La trayectoria es generada a partir del mapa de marcadores visuales externo. En todo momento, la localización del robot respecto a un sistema de referencia externo y el mapa de marcadores, es realizado mediante técnicas de SLAM visual. La auto-localización de un robot móvil dentro de un entorno desconocido a priori constituye uno de los desafíos más importantes en la robótica, habiéndose conseguido su solución en las últimas décadas, con una formulación como un problema numérico y con implementaciones en casos que van desde robots aéreos a robots en entornos cerrados, existiendo numerosos estudios y publicaciones al respecto. La primera técnica de localización y mapeo simultáneo SLAM fue desarrollada en 1989, más como un concepto que como un algoritmo único, ya que su objetivo es gestionar un mapa del entorno constituido por posiciones de puntos de interés, obtenidos únicamente a partir de los datos de localización recogidos por los sensores, y obtener la pose del robot respecto al entorno, en un proceso limitado por el ruido de los sensores, tanto en la detección del entorno como en la odometría del robot, empleándose técnicas probabilísticas aumentar la precisión en la estimación. Atendiendo al algoritmo probabilístico utilizado, las técnicas SLAM pueden clasificarse en las basadas en Filtros de Kalman, en Filtros de Partículas y en su combinación. Los Filtros de Kalman consideran distribuciones de probabilidad gaussiana tanto en las medidas de los sensores como en las medidas indirectas obtenidas a partir de ellos, de modo que utilizan un conjunto de ecuaciones para estimar el estado de un proceso, minimizando la media del error cuadrático, incluso cuando el modelo del sistema no se conoce con precisión, siendo el más utilizado el Filtro de Kalman Extendido a modelos nolineales. Los Filtros de Partículas consideran distribuciones de probabilidad en las medidas de los sensores sin modelo, representándose mediante un conjunto de muestras aleatorias o partículas, de modo que utilizan el método Montecarlo secuencial para estimar la pose del robot y el mapa a partir de ellas de forma iterativa, siendo el más utilizado el Rao-Backwell, que permite obtener un estimador optimizado mediante el criterio del error cuadrático medio. Entre las técnicas que combinan ambos tipos de filtros probabilísticos destaca el FastSLAM, un algoritmo que estima la localización del robot con un Filtro de Partículas y la posición de los puntos de interés mediante el Filtro de Kalman Extendido. Las técnicas SLAM puede utilizar cualquier tipo de sensor que proporcionen información de localización, como Laser, Sonar, Ultrasonidos o Visión. Los sensores basados en visión pueden obtener las medidas de distancia mediante técnicas de visión estereoscópica o mediante técnica de visión monocular. La utilización de sensores basados en visión tiene como ventajas, proporcionar información global a través de las imágenes, no sólo medida de distancia, sino también información adicional como texturas o patrones, y la asequibilidad del hardware frente a otros sensores. Sin embargo, su principal inconveniente es el alto coste computacional necesario para los complejos algoritmos de detección, descripción, correspondencia y reconstrucción tridimensional, requeridos para la obtención de la medida de distancia a los múltiples puntos de interés procesados. Los principales inconvenientes del SLAM son el alto coste computacional, cuando se utiliza un número elevado de características visuales, y su consistencia ante errores, derivados del ruido en los sensores, del modelado y del tratamiento de las distribuciones de probabilidad, que pueden producir el fallo del filtro. Dado que el SLAM basado en el Filtro de Kalman Extendido es una las técnicas más utilizadas, se ha seleccionado en primer lugar cómo solución para el sistema de localización del robot, realizando una implementación en la que las medidas de los sensores y el movimiento del robot son simulados por software, antes de materializarla en el prototipo. La simulación se ha realizado considerando una disposición de ocho marcadores visuales que en todo momento proporcionan ocho medidas de distancia con ruido aleatorio equivalente al error del sensor visual real, y un modelo cinemático del robot que considera deslizamiento de las ruedas mediante ruido aleatorio. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-EKF presenta tendencia a corregir la localización obtenida mediante la odometría, pero no en suficiente cuantía para dar un resultado aceptable, sin conseguir una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. La conclusión obtenida tras la simulación ha sido que el algoritmo SLAMEKF proporciona inadecuada convergencia de precisión, debido a la alta incertidumbre en la odometría y a la alta incertidumbre en las medidas de posición de los marcadores proporcionadas por el sensor visual. Tras estos resultados, se ha buscado una solución alternativa. Partiendo de la idea subyacente en los Filtros de Partículas, se ha planteado sustituir las distribuciones de probabilidad gaussianas consideradas por el Filtro de Kalman Extendido, por distribuciones equi-probables que derivan en funciones binarias que representan intervalos de probabilidad no-nula. La aplicación de Filtro supone la superposición de todas las funciones de probabilidad no-nula disponibles, de modo que el resultado es el intervalo donde existe alguna probabilidad de la medida. Cómo la efectividad de este filtro aumenta con el número disponible de medidas, se ha propuesto obtener una medida de la localización del robot a partir de cada pareja de medidas disponibles de posición de los marcadores, haciendo uso de la Trilateración. SLAM mediante Trilateración Estadística (SLAM-ST) es como se ha denominado a esta solución propuesta en este trabajo fin de master. Al igual que con el algoritmo SLAM-EKF, ha sido realizada una implementación del algoritmo SLAM-ST en la que las medidas de los sensores y el movimiento del robot son simulados, antes de materializarla en el prototipo. La simulación se ha realizado en las mismas condiciones y con las mismas consideraciones, para comparar con los resultados obtenidos con el algoritmo SLAM-EKF. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-ST presenta mayor tendencia que el algoritmo SLAM-EKF a corregir la localización obtenida mediante la odometría, de modo que se alcanza una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. Las conclusiones obtenidas tras la simulación han sido que, en condiciones de alta incertidumbre en la odometría y en la medida de posición de los marcadores respecto al robot, el algoritmo SLAM-ST proporciona mejores resultado que el algoritmo SLAM-EKF, y que la precisión conseguida sugiere la viabilidad de la implementación en el prototipo. La implementación del algoritmo SLAM-ST en el prototipo ha sido realizada en conjunción con la implementación del Sensor Visual Monocular, el Modelo de Odometría y el Control de Trayectoria. El Sensor Visual Monocular es el elemento del sistema SLAM encargado de proporcionar la posición con respecto al robot de los marcadores visuales externos, a partir de las imágenes obtenidas por las cámaras, mediante técnicas de procesamiento de imagen que permiten detectar e identificar los marcadores visuales que se hallen presentes en la imagen capturada, así como obtener las características visuales a partir de las cuales inferir la posición del marcador visual respecto a la cámara, mediante reconstrucción tridimensional monocular, basada en el conocimiento a-priori del tamaño real del mismo. Para tal fin, se ha utilizado el modelo matemático de cámara pin-hole, y se ha considerado las distorsiones de la cámara real mediante la calibración del sensor, en vez de utilizar la calibración de la imagen, tras comprobar el alto coste computacional que requiere la corrección de la imagen capturada, de modo que la corrección se realiza sobre las características visuales extraídas y no sobre la imagen completa. El Modelo de Odometría es el elemento del sistema SLAM encargado de proporcionar la estimación de movimiento incremental del robot en base a la información proporcionada por los sensores de odometría, típicamente los encoders de las ruedas. Por la tipología del robot utilizado en el prototipo, se ha utilizado un modelo cinemático de un robot tipo uniciclo y un modelo de odometría de un robot móvil de dos ruedas tipo diferencial, en el que la traslación y la rotación se determinan por la diferencia de velocidad de las ruedas motrices, considerando que no existe deslizamiento entre la rueda y el suelo. Sin embargo, el deslizamiento en las ruedas aparece como consecuencia de causas externas que se producen de manera inconstante durante el movimiento del robot que provocan insuficiente contacto de la rueda con el suelo por efectos dinámicos. Para mantener la validez del modelo de odometría en todas estas situaciones que producen deslizamiento, se ha considerado un modelo de incertidumbre basado en un ensayo representativo de las situaciones más habituales de deslizamiento. El Control de Trayectoria es el elemento encargado de proporcionar las órdenes de movimiento al robot móvil. El control implementado en el prototipo está basado en postura, utilizando como entrada la desviación en la posición y orientación respecto a una referencia de paso de la trayectoria. La localización del robot utilizada es siempre de la estimación proporcionada por el sistema SLAM y la trayectoria es planeada a partir del conocimiento del mapa de marcas visuales que limitan el espacio de trabajo, mapa proporcionado por el sistema SLAM. Las limitaciones del sensor visual embarcado en la velocidad de estabilización de la imagen capturada han conducido a que el control se haya implementado con la estrategia “mirar parado”, en la que la captación de imágenes se realiza en posición estática. Para evaluar el sistema de localización basado en visión del prototipo, se ha diseñado una prueba de validación que obtenga una medida cuantitativa de su comportamiento. La prueba consiste en la realización de forma completamente autónoma de la detección del espacio de trabajo, la planificación de una trayectoria de inspección que lo transite completamente, y la ejecución del recorrido de la misma, registrando simultáneamente la localización real del robot móvil junto con la localización proporcionada por el sistema SLAM Visual Monocular. Se han realizado varias ejecuciones de prueba de validación, siempre en las mismas condiciones iniciales de posición de marcadores visuales y localización del robot móvil, comprobando la repetitividad del ensayo. Los resultados presentados corresponden a la consideración de las medidas más pesimistas obtenidas tras el procesamiento del conjunto de medidas de todos los ensayos. Los resultados revelan que, considerando todo el espacio de trabajo, el error de posición, diferencia entre los valores de proporcionados por el sistema SLAM y los valores medidos de posición real, se encuentra en el entorno de la veintena de centímetros. Además, los valores de incertidumbre proporcionados por el sistema SLAM son, en todos los casos, superiores a este error. Estos resultados conducen a concluir que el sistema de localización basado en SLAM Visual, mediante un algoritmo de Trilateración Estadística, usando un sensor visual monocular y marcadores visuales externos, funciona, proporcionando la localización del robot móvil con respecto al sistema de referencia global inicial y un mapa de su situación de los marcadores visuales, con precisión limitada, pero con incertidumbre conservativa, al estar en todo momento el error real de localización por debajo del error estimado. Sin embargo, los resultados de precisión del sistema de localización no son suficientemente altos para cumplir con los requerimientos como solución robotizada aplicada a la inspección ultrasónica estructural de aeronaves en servicio. En este sentido, los resultados sugieren que la posible continuación de este trabajo en el futuro debe centrarse en la mejora de la precisión de localización del robot móvil, con líneas de trabajo encaminadas a mejorar el comportamiento dinámico del prototipo, en mejorar la precisión de las medidas de posición proporcionadas por el sensor visual y en optimizar el resultado del algoritmo SLAM. Algunas de estas líneas futuras podrían ser la utilización de plataformas robóticas de desarrollo alternativas, la exploración de técnicas de visión por computador complementarias, como la odometría visual, la visión omnidireccional, la visión estereoscópica o las técnicas de reconstrucción tridimensional densa a partir de captura monocular, y el análisis de algoritmos SLAM alternativos condicionado a disponer de una sustancial mejora de precisión en el modelo de odometría y en las medidas de posición de los marcadores.
Resumo:
Information of crop phenology is essential for evaluating crop productivity. In a previous work, we determined phenological stages with remote sensing data using a dynamic system framework and an extended Kalman filter (EKF) approach. In this paper, we demonstrate that the particle filter is a more reliable method to infer any phenological stage compared to the EKF. The improvements achieved with this approach are discussed. In addition, this methodology enables the estimation of key cultivation dates, thus providing a practical product for many applications. The dates of some important stages, as the sowing date and the day when the crop reaches the panicle initiation stage, have been chosen to show the potential of this technique.
Resumo:
A hazai turizmus gyakorlatával kapcsolatos vizsgálatok tapasztalatai nyomán az egri Eszterházy Károly Főiskola (EKF) turizmusmenedzsment-kurzusának oktatói célszerűnek ítélték a témára vonatkozó tananyag fejlesztését. A cikk szerzői azt remélik azonban, hogy az utóbbi munka egyes megállapításai minden, a gazdasági földrajz, a turizmus (idegenforgalom), a térségfejlesztés valamely szegmensével foglalkozó szakembernek, kiemelten: vezetőnek – s több más gazdasági ág illetékeseinek – az érdeklődésére számot tarthatnak, ezért ezekről jelen cikkben is beszámolnak. _____ In this article the authors reviewed first the different types of tourist attractions (destinations) and they analysed the common evaluation methods of their attractiveness (e.g. the possibilities and limits of the tourism statistics). Then they tried to display the existing information on the main Hungarian attractions and their attractiveness. In this study revealed that there exist no generally recognized list of the most visited attractions, and the real measures of their attractiveness are not known either. The authors emphasize that shaping a comprehensive concept on the above mentioned issue would highly contribute to the elaboration of a successful and achievable tourism strategy, thus it would be of great importance.
Resumo:
SANTANA, André M.; SANTIAGO, Gutemberg S.; MEDEIROS, Adelardo A. D. Real-Time Visual SLAM Using Pre-Existing Floor Lines as Landmarks and a Single Camera. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG. Anais... Juiz de Fora: CBA, 2008.
Resumo:
SANTANA, André M.; SANTIAGO, Gutemberg S.; MEDEIROS, Adelardo A. D. Real-Time Visual SLAM Using Pre-Existing Floor Lines as Landmarks and a Single Camera. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG. Anais... Juiz de Fora: CBA, 2008.
Resumo:
Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.
Resumo:
Estimating un-measurable states is an important component for onboard diagnostics (OBD) and control strategy development in diesel exhaust aftertreatment systems. This research focuses on the development of an Extended Kalman Filter (EKF) based state estimator for two of the main components in a diesel engine aftertreatment system: the Diesel Oxidation Catalyst (DOC) and the Selective Catalytic Reduction (SCR) catalyst. One of the key areas of interest is the performance of these estimators when the catalyzed particulate filter (CPF) is being actively regenerated. In this study, model reduction techniques were developed and used to develop reduced order models from the 1D models used to simulate the DOC and SCR. As a result of order reduction, the number of states in the estimator is reduced from 12 to 1 per element for the DOC and 12 to 2 per element for the SCR. The reduced order models were simulated on the experimental data and compared to the high fidelity model and the experimental data. The results show that the effect of eliminating the heat transfer and mass transfer coefficients are not significant on the performance of the reduced order models. This is shown by an insignificant change in the kinetic parameters between the reduced order and 1D model for simulating the experimental data. An EKF based estimator to estimate the internal states of the DOC and SCR was developed. The DOC and SCR estimators were simulated on the experimental data to show that the estimator provides improved estimation of states compared to a reduced order model. The results showed that using the temperature measurement at the DOC outlet improved the estimates of the CO , NO , NO2 and HC concentrations from the DOC. The SCR estimator was used to evaluate the effect of NH3 and NOX sensors on state estimation quality. Three sensor combinations of NOX sensor only, NH3 sensor only and both NOX and NH3 sensors were evaluated. The NOX only configuration had the worst performance, the NH3 sensor only configuration was in the middle and both the NOX and NH3 sensor combination provided the best performance.