980 resultados para EFFICIENT SIMULATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collisions among trains and cars at road/rail level crossings (LXs) can have severe consequences such as high level of fatalities, injuries and significant financial losses. As communication and positioning technologies have significantly advanced, implementing vehicular ad hoc networks (VANETs) in the vicinity of unmanned LXs, generally LXs without barriers, is seen as an efficient and effective approach to mitigate or even eliminate collisions without imposing huge infrastructure costs. VANETs necessitate unique communication strategies, in which routing protocols take a prominent part in their scalability and overall performance, through finding optimised routes quickly and with low bandwidth overheads. This article studies a novel geo-multicast framework that incorporates a set of models for communication, message flow and geo-determination of endangered vehicles with a reliable receiver-based geo-multicast protocol to support cooperative level crossings (CLXs), which provide collision warnings to the endangered motorists facing road/rail LXs without barriers. This framework is designed and studied as part of a $5.5 m Government and industry funded project, entitled 'Intelligent-Transport-Systems to improve safety at road/rail crossings'. Combined simulation and experimental studies of the proposed geo-multicast framework have demonstrated promising outcomes as cooperative awareness messages provide actionable critical information to endangered drivers who are identified by CLXs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daylight devices are important components of any climate responsive façade system. But, the evolution of parametric CAD systems and digital fabrication has had an impact on architectural form so that regular forms are shifting to complex geometries. Architectural and engineering integration of daylight devices in envelopes with complex geometries is a challenge in terms of design and performance evaluation. The purpose of this paper is to assess daylight performance of a building with a climatic responsive envelope with complex geometry that integrates shading devices in the façade. The case study is based on the Esplanade buildings in Singapore. Climate-based day-light metrics such as Daylight Availability and Useful Daylight Illuminance are used. DIVA (daylight simulation), and Grasshopper (parametric analysis) plug-ins for Rhinoceros have been employed to examine the range of performance possibilities. Parameters such as dimension, inclination of the device, projected shadows and shape have been changed in order to maximize daylight availability and Useful Daylight Illuminance while minimizing glare probability. While orientation did not have a great impact on the results, aperture of the shading devices did, showing that shading devices with a projection of 1.75 m to 2.00 m performed best, achieving target lighting levels without issues of glare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For industrial wireless sensor networks, maintaining the routing path for a high packet delivery ratio is one of the key objectives in network operations. It is important to both provide the high data delivery rate at the sink node and guarantee a timely delivery of the data packet at the sink node. Most proactive routing protocols for sensor networks are based on simple periodic updates to distribute the routing information. A faulty link causes packet loss and retransmission at the source until periodic route update packets are issued and the link has been identified as broken. We propose a new proactive route maintenance process where periodic update is backed-up with a secondary layer of local updates repeating with shorter periods for timely discovery of broken links. Proposed route maintenance scheme improves reliability of the network by decreasing the packet loss due to delayed identification of broken links. We show by simulation that proposed mechanism behaves better than the existing popular routing protocols (AODV, AOMDV and DSDV) in terms of end-to-end delay, routing overhead, packet reception ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of flux of carbon-bearing cations over nanopatterned surfaces with conductive nanotips and nonconductive nanoislands is simulated using the Monte-Carlo technique. It is shown that the ion current is focused to nanotip surfaces when the negative substrate bias is low and only slightly perturbed at higher substrate biases. In the low-bias case, the mean horizontal ion displacement caused by the nanotip electric field exceeds 10 nm. However, at higher substrate biases, this value reduces down to 2 nm. In the nonconductive nanopattern case, the ion current distribution is highly nonuniform, with distinctive zones of depleted current density around the nanoislands. The simulation results suggest the efficient means to control ion fluxes in plasma-aided nanofabrication of ordered nanopatterns, such as nanotip microemitter structures and quantum dot or nanoparticle arrays. © World Scientific Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the dynamics of disease spread is essential in contexts such as estimating load on medical services, as well as risk assessment and interven- tion policies against large-scale epidemic outbreaks. However, most of the information is available after the outbreak itself, and preemptive assessment is far from trivial. Here, we report on an agent-based model developed to investigate such epidemic events in a stylised urban environment. For most diseases, infection of a new individual may occur from casual contact in crowds as well as from repeated interactions with social partners such as work colleagues or family members. Our model therefore accounts for these two phenomena. Given the scale of the system, efficient parallel computing is required. In this presentation, we focus on aspects related to paralllelisation for large networks generation and massively multi-agent simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order timefractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passenger flow simulations are an important tool for designing and managing airports. This thesis examines the different boarding strategies for the Boeing 777 and Airbus 380 aircraft in order to investigate their current performance and to determine minimum boarding times. The most optimal strategies have been discovered and new strategies that are more efficient are proposed. The methods presented offer reduced aircraft boarding times which plays an important role for reducing the overall aircraft Turn Time for an airline.