808 resultados para EFFICIENT CATALYST
Resumo:
Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N-2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15mol%). The material can be recycled at least 10times without alteration of its catalytic properties.
Resumo:
Spent hydroprocessing catalysts (HPCs) are solid wastes generated in refinery industries and typically contain various hazardous metals, such as Co, Ni, and Mo. These wastes cannot be discharged into the environment due to strict regulations and require proper treatment to remove the hazardous substances. Various options have been proposed and developed for spent catalysts treatment; however, hydrometallurgical processes are considered efficient, cost-effective and environmentally-friendly methods of metal extraction, and have been widely employed for different metal uptake from aqueous leachates of secondary materials. Although there are a large number of studies on hazardous metal extraction from aqueous solutions of various spent catalysts, little information is available on Co, Ni, and Mo removal from spent NiMo hydroprocessing catalysts. In the current study, a solvent extraction process was applied to the spent HPC to specifically remove Co, Ni, and Mo. The spent HPC is dissolved in an acid solution and then the metals are extracted using three different extractants, two of which were aminebased and one which was a quaternary ammonium salt. The main aim of this study was to develop a hydrometallurgical method to remove, and ultimately be able to recover, Co, Ni, and Mo from the spent HPCs produced at the petrochemical plant in Come By Chance, Newfoundland and Labrador. The specific objectives of the study were: (1) characterization of the spent catalyst and the acidic leachate, (2) identifying the most efficient leaching agent to dissolve the metals from the spent catalyst; (3) development of a solvent extraction procedure using the amine-based extractants Alamine308, Alamine336 and the quaternary ammonium salt, Aliquat336 in toluene to remove Co, Ni, and Mo from the spent catalyst; (4) selection of the best reagent for Co, Ni, and Mo extraction based on the required contact time, required extractant concentration, as well as organic:aqueous ratio; and (5) evaluation of the extraction conditions and optimization of the metal extraction process using the Design Expert® software. For the present study, a Central Composite Design (CCD) method was applied as the main method to design the experiments, evaluate the effect of each parameter, provide a statistical model, and optimize the extraction process. Three parameters were considered as the most significant factors affecting the process efficiency: (i) extractant concentration, (ii) the organic:aqueous ratio, and (iii) contact time. Metal extraction efficiencies were calculated based on ICP analysis of the pre- and post–leachates, and the process optimization was conducted with the aid of the Design Expert® software. The obtained results showed that Alamine308 can be considered to be the most effective and suitable extractant for spent HPC examined in the study. Alamine308 is capable of removing all three metals to the maximum amounts. Aliquat336 was found to be not as effective, especially for Ni extraction; however, it is able to separate all of these metals within the first 10 min, unlike Alamine336, which required more than 35 min to do so. Based on the results of this study, a cost-effective and environmentally-friendly solventextraction process was achieved to remove Co, Ni, and Mo from the spent HPCs in a short amount of time and with the low extractant concentration required. This method can be tested and implemented for other hazardous metals from other secondary materials as well. Further investigation may be required; however, the results of this study can be a guide for future research on similar metal extraction processes.
Resumo:
Human gene therapy has faced many setbacks due to the immunogenicity and oncogenity of viruses. Safe and efficient alternative gene delivery vehicles are needed to implement gene therapy in clinical practice. Polymeric vectors are an attractive option due to their availability, simple chemistry, and low toxicity and immunogenicity. Our group has previously reported biodegradable polyethylenimines (PEI) that show high transfection efficiency and low toxicity by cross-linking 800 Da PEI with diacrylate cross-linkers using Michael addition. However, the synthesis was difficult to control, inconsistent, and resulted in polymers with a narrow range of molecular weights. In the present work, we utilized a heterogenous PVP(Fe(III)) catalyst to provide a more controllable PEI crosslinking reaction and wider range of biodegradable PEIs. The biodegradable PEIs reported here have molecular weights ranging from 1.2 kDa to 48 kDa, are nontoxic in MDA-MB-231 cells, and show low toxicity in HeLa cells. At their respective optimal polymer:DNA ratios, these biodegradable PEIs demonstrated about 2-5-fold higher transfection efficiency and 2-7-fold higher cellular uptake, compared unmodified 25 kDa PEI. The biodegradable PEIs show similar DNA condensation properties as unmodified PEI but more readily unpackage DNA, based on ethidium bromide exclusion and heparan sulfate competitive displacement assays, which could contribute to their improved transfection efficiency. Overall, the synthesis reported here provides a more robust, controlled reaction to produce cross-linked biodegradable PEIs that show enhanced gene delivery, low toxicity, and high cellular uptake and can potentially be used for future in vivo studies.
Resumo:
International audience
Resumo:
A series of perovskite-like oxides LaCu1-xMxO3 (M=Mn, Ti; 0.0 ⩽ x ⩽ 0.8) was prepared by amorphous citrate decomposition and characterized by XRD, ICP-OES and XPS techniques. The catalysts were tested in the Fenton-like degradation of paracetamol with H2O2, under mild reaction conditions, 25 °C and nearly neutral pH. Values of decomposition of paracetamol between 80 and 97% at 300 min were achieved for most of samples. The presence of the Cu2+/Cu+ pair at the surface of the catalysts is necessary to carry out the reaction and the catalysts containing higher amount of copper at the surface, resulted to be more active. The leaching of metals was less than 1%, which discards the contribution of the homogenous Fenton-like reaction and remarks the high stability of the metals into the mixed oxide network. The catalytic activity of LaCu0.8Mn0.2O3 was maintained after three cycles of reaction, which proves the stability and reusability of the catalyst.
Resumo:
It is well known that activated carbon with welldeveloped porosity is a promising material that have been used for several applications, from adsorption to catalysis. Research in this field has intensified in recent years, looking for new and improved characteristics and applications. Our research group, recently renamed Materials for Adsorption and Catalysis group (MAC) in LAQV-REQUIMTE, has also devoted many research work in this subject, and has developed several collaboration works with other national and international research groups in the field. Among our research group interests there is the study of catalytic properties of carbon materials and specifically mesoporous carbon. Some of the promising results were selected and summarized here, demonstrating that mesoporous carbon is an efficient and environmentally friendly heterogeneous catalyst.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
In this work we have studied cyclooctene epoxidation with PhIO, using a new iron porphyrin, 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrinato iron(III), supported on silica matrices via eletrostatic interaction and / or covalent bonds as catalyst. These catalysts were obtained and immobilized on the solid supports propyltrimethylammonium silica (SiN+); propyltrimethylammonium and propylimidazole silica [SiN+(IPG)] and chloropropylsilica (CPS) via elestrostatic interactions and covalent binding. Characterization of the supported catalysts by UV-Vis spectroscopy and EPR (Electron paramagnetic resonance) indicated the presence of a mixture of FeII and FeIII species in all of the three obtained catalysts. In the case of (Z)-cyclooctene epoxidation by PhIO the yields observed for cis-epoxycyclooctane were satisfactory for the reactions catalyzed by the three materials (ranging from 68% to 85%). Such results indicate that immobilization of metalloporphyrins onto solid supports via groups localized on the ortho positions of their mesophenyl rings can lead to efficient catalysts for epoxidation reactions. The catalyst 1-CPS is less active than 1-SiN and 1-SiN(IPG), this argues in favour of the immobilization of this metalloporphyrin onto solids via electrostatic interactions, which is easier to achieve and results in more active oxidation catalysts. Interestingly, the activity of the supported catalysts remained the same even after three successive recyclings; therefore, they are stable under the oxidizing conditions.
Resumo:
This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazin-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazin-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazin-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4]-thiazin-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl)-3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide.
Resumo:
The hygienic behavior of honey bees is based on a two-step process, including uncapping and removing diseased, dead, damaged, or parasitized brood inside the cell. We evaluated during periods of 1 h the time that hygienic and non-hygienic colonies of Africanized honey bees spend to detect, uncap and remove pin-killed brood using comb inserts with transparent walls placed in observation hives. We observed that hygienic colonies are significantly faster in detecting, uncapping and removing dead brood in the cells (P < 0.001).
Resumo:
Background and Purpose: Radiofrequency (RF) ablation of renal tumors is a major technique for tumor cell destruction while preserving healthy renal parenchyma. There is no consensus in the literature regarding the optimal temperature, impedance, and time for RF application for effective cell destruction. This study investigated two variables while keeping time unchanged: Temperature for RF cell destruction and tissue impedance in dog kidneys. Materials and Methods: Sixteen dogs had renal punctures through videolaparoscopy for RF interstitial tissue ablation. A RF generator was applied for 10 minutes to the dog's kidney at different target temperatures: 80 degrees C, 90 degrees C, and 100 degrees C. On postoperative day14, the animals were sacrificed and nephrectomized. All lesions were macroscopically and microscopically examined. The bioelectrical impedance was evaluated at three different temperatures. Results: Renal injuries were wider and deeper at 90 degrees C (P < 0.001), and they were similar at 80 degrees C and 100 degrees C. The bioelectrical impedance was lower at 90 degrees C than at the temperatures of 80 degrees C and 100 degrees C (P < 0.001). Viable cells in the RF ablation tissue area were not found in the microscopic examination. Conclusion: The most effective cell destruction in terms of width and depth was achieved at 90 degrees C, which was also the optimal temperature for tissue impedance. RF ablation of renal cells eliminated all viable cells.
Resumo:
We present the magnetic separation approach to facilitate the recovery of gold nanoparticle (AuNP) catalysts. The use of magnetically recoverable supports for the immobilization of AuNPs instead of traditional oxides, polymers or carbon based solids guarantees facile, clean, fast and efficient separation of the catalyst at the end of the reaction cycle. Magnetic separation can be considered an environmentally benign separation approach, since it minimizes the use of auxiliary substances and energy for achieving catalyst recovery. The catalyst preparation is based on the immobilization of Au(3+) on the surface of core-shell silica-coated magnetite nanoparticles, followed by metal reduction using two different methods. AuNPs were prepared by thermal reduction in air and by hydrogen reduction at mild temperature. Interestingly, the mean particle size of the supported AuNPs was similar (ca. 5.9 nm), but the polydispersity of the samples is quite different. The catalytic activity of both catalysts in the aerobic oxidation of alcohols was investigated and a distinct selectivity for benzyl alcohol oxidation was observed.
Resumo:
We report a highly efficient switch built from an organic molecule assembled between single-wall carbon nanotube electrodes. We theoretically show that changes in the distance between the electrodes alter the molecular conformation within the gap, affecting in a dramatic way the electronic and charge transport properties, with an on/off ratio larger than 300. This opens up the perspective of combining molecular electronics with carbon nanotubes, bringing great possibilities for the design of nanodevices.
Resumo:
omega-Transaminases have been evaluated as biocatalysts in the reductive amination of organoselenium acetophenones to the corresponding amines, and in the kinetic resolution of racemic organoselenium amines. Kinetic resolution proved to be more efficient than the asymmetric reductive amination. By using these methodologies we were able to obtain both amine enantiomers in high enantiomeric excess (up to 99%). Derivatives of the obtained optically pure o-selenium 1-phenylethyl amine were evaluated as ligands in the palladium-catalyzed asymmetric alkylation, giving the alkylated product in up to 99% ee.
Resumo:
Direct borohydride fuel cells are promising high energy density portable generators. However, their development remains limited by the complexity of the anodic reaction: The borohydride oxidation reaction (BOR) kinetics is slow and occurs at high overvoltages, while it may compete with the heterogeneous hydrolysis of BH(4)(-). Nevertheless, one usually admits that gold is rather inactive toward the heterogeneous hydrolysis of BH(4)(-) and presents some activity regarding the BOR, therefore yielding to the complete eight-electron BOR. In the present paper, by coupling online mass spectrometry to electrochemistry, we in situ monitored the H(2) yield during BOR experiments on sputtered gold electrodes. Our results show non-negligible H(2) generation on Au on the whole BOR potential range (0-0.8 V vs reversible hydrogen electrode), thus revealing that gold cannot be considered as a faradaic-efficient BOR electrocatalyst. We further propose a relevant reaction pathway for the BOR on gold that accounts for these findings.