946 resultados para EBWorld, Java, Offline, XML, GIS
Resumo:
Mobile phones are now powerful and pervasive making them ideal information browsers. The Internet has revolutionized our lives and is a major knowledge sharing media. However, many mobile phone users cannot access the Internet (for financial or technical reasons) and so the mobile Internet has not been fully realized. We propose a novel content delivery network based on both a factual and speculative analysis of today’s technology and analyze its feasibility. If adopted people living in remote regions without Internet will be able to access essential (static) information with periodic updates.
Resumo:
With the increasing number of XML documents in varied domains, it has become essential to identify ways of finding interesting information from these documents. Data mining techniques were used to derive this interesting information. Mining on XML documents is impacted by its model due to the semi-structured nature of these documents. Hence, in this chapter we present an overview of the various models of XML documents, how these models were used for mining and some of the issues and challenges in these models. In addition, this chapter also provides some insights into the future models of XML documents for effectively capturing the two important features namely structure and content of XML documents for mining.
Resumo:
In the last few years we have observed a proliferation of approaches for clustering XML docu- ments and schemas based on their structure and content. The presence of such a huge amount of approaches is due to the different applications requiring the XML data to be clustered. These applications need data in the form of similar contents, tags, paths, structures and semantics. In this paper, we first outline the application contexts in which clustering is useful, then we survey approaches so far proposed relying on the abstract representation of data (instances or schema), on the identified similarity measure, and on the clustering algorithm. This presentation leads to draw a taxonomy in which the current approaches can be classified and compared. We aim at introducing an integrated view that is useful when comparing XML data clustering approaches, when developing a new clustering algorithm, and when implementing an XML clustering compo- nent. Finally, the paper moves into the description of future trends and research issues that still need to be faced.
Resumo:
With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.
Resumo:
Background/aims: Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Recent evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. Method: This project, with its extensive use of Geographic Information Systems (GIS) technology, will rank 11,338 rural and remote population centres to identify geographical ‘hotspots’ where there is likely to be a mismatch between the demand for and actual provision of cardiovascular services. It will, therefore, guide more equitable provision of services to rural and remote communities. Outcomes: The CARDIAC-ARIA project is designed to; map the type and location of cardiovascular services currently available in Australia, relative to the distribution of individuals who currently have symptomatic CVD; determine, by expert panel, what are the minimal requirements for comprehensive cardiovascular health support in metropolitan and rural communities and derive a rating classification based on the Accessibility and Remoteness Index of Australia (ARIA) for each of Australia's 11,338 rural and remote population centres. Conclusion: This unique, innovative and highly collaborative project has the potential to deliver a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia.
Resumo:
This paper presents new research methods that combine the use of location-based, social media on mobile phones with geographic information systems (GIS) to explore connections between people, place and health. It discusses the feasibility, limitations, and benefits of using these methods, which enable real-time, location-based, quantitative data to be collected on the recreation, consumption, and physical activity patterns of urban residents in Brisbane, Queensland. The study employs mechanisms already inherent in popular mobile social media applications (Facebook, Twitter and Foursquare) to collect this data. The research methods presented in this paper are innovative and potentially applicable to an increasing number of academic research areas, as well as to a growing range of service providers that benefit from monitoring consumer behaviour, and responding to emerging changes in these patterns and trends. The ability to both collect and map objective, real-time data about the consumption, leisure, recreation, and physical activity patterns amongst urban communities has direct implications for a range of research disciplines including media studies, advertising, health promotion, social marketing, public health inequalities, and urban design.
Resumo:
A technologically innovative study was undertaken across two suburbs in Brisbane, Australia, to assess socioeconomic differences in women's use of the local environment for work, recreation, and physical activity. Mothers from high and low socioeconomic suburbs were instructed to continue with usual daily routines, and to use mobile phone applications (Facebook Places, Twitter, and Foursquare) on their mobile phones to ‘check-in’ at each location and destination they reached during a one-week period. These smartphone applications are able to track travel logistics via built-in geographical information systems (GIS), which record participants’ points of latitude and longitude at each destination they reach. Location data were downloaded to Google Earth and excel for analysis. Women provided additional qualitative data via text regarding the reasons and social contexts of their travel. We analysed 2183 ‘check-ins’ for 54 women in this pilot study to gain quantitative, qualitative, and spatial data on human-environment interactions. Data was gathered on distances travelled, mode of transport, reason for travel, social context of travel, and categorised in terms of physical activity type – walking, running, sports, gym, cycling, or playing in the park. We found that the women in both suburbs had similar daily routines with the exception of physical activity. We identified 15% of ‘check-ins’ in the lower socioeconomic group as qualifying for the physical activity category, compared with 23% in the higher socioeconomic group. This was explained by more daily walking for transport (1.7kms to 0.2kms) and less car travel each week (28.km to 48.4kms) in the higher socioeconomic suburb. We ascertained insights regarding the socio-cultural influences on these differences via additional qualitative data. We discuss the benefits and limitations of using new technologies and Google Earth with implications for informing future physical and social aspects of urban design, and health promotion in socioeconomically diverse cities.
Resumo:
In this study we develop a theorization of an Internet dating site as a cultural artifact. The site, Gaydar, is targeted at gay men. We argue that contemporary received representations of their sexuality figure heavily in the site’s focus by providing a cultural logic for the apparent ad hoc development trajectories of its varied commercial and non-‐commercial services. More specifically, we suggest that the growing sets of services related to the website are heavily enmeshed within current social practices and meanings. These practices and meanings are, in turn, shaped by the interactions and preferences of a variety of diverse groups involved in what is routinely seen within the mainstream literature as a singularly specific sexuality and cultural project. Thus, we attend to two areas – the influence of the various social engagements associated with Gaydar together with the further extension of its trajectory ‘beyond the web’. Through the case of Gaydar, we contribute a study that recognizes the need for attention to sexuality in information systems research and one which illustrates sexuality as a pivotal aspect of culture. We also draw from anthropology to theorize ICTs as cultural artifacts and provide insights into the contemporary phenomena of ICT enabled social networking.
Resumo:
A review of literature on the role of emergency nurses in Indonesia revealed a dearth of research. Anecdotal evidence suggests a lack of clarity in role definition which has led to uncertainty and role ambiguity. Despite advances in the development of specialist nursing roles in Indonesia, that of the emergency nurse remains unclear. This study explored the role of nurses working in emergency care services in three general hospitals in West Java, Indonesia. The theoretical framework is grounded in Charmaz’s constructivist grounded theory. Data collection methods were observation, in-depth interviews and interrogation of related documents. Phase one of data collection involved 74 h of observation and nterviews with 35 nurses working in the three ED settings. For the purposes of theoretical sampling, a second phase of data collection was conducted. This involved a second nterview with eight participants from the three EDs. nterviews were also undertaken with the three key informants of nursing management of three related hospitals; key informants from the Indonesian Nurses Association; the Directorate of Nursing, Ministry of Health; and from the organization for ED nurses. Data analysis drew on Charmaz’s constructivist approach and the concepts of simultaneous data collection and analysis, constant comparison, coding, and theoretical sampling. The analysis generated four theoretical concepts that characterized the role of the emergency nurse: An arbitrary scope of practice, Struggling for recognition, Learning on the job and Looking to better practice. These concepts provided analytical direction for an exploration of the clinical and political dimensions of the role of the emergency nurse in Indonesia.
Resumo:
The continuous growth of the XML data poses a great concern in the area of XML data management. The need for processing large amounts of XML data brings complications to many applications, such as information retrieval, data integration and many others. One way of simplifying this problem is to break the massive amount of data into smaller groups by application of clustering techniques. However, XML clustering is an intricate task that may involve the processing of both the structure and the content of XML data in order to identify similar XML data. This research presents four clustering methods, two methods utilizing the structure of XML documents and the other two utilizing both the structure and the content. The two structural clustering methods have different data models. One is based on a path model and other is based on a tree model. These methods employ rigid similarity measures which aim to identifying corresponding elements between documents with different or similar underlying structure. The two clustering methods that utilize both the structural and content information vary in terms of how the structure and content similarity are combined. One clustering method calculates the document similarity by using a linear weighting combination strategy of structure and content similarities. The content similarity in this clustering method is based on a semantic kernel. The other method calculates the distance between documents by a non-linear combination of the structure and content of XML documents using a semantic kernel. Empirical analysis shows that the structure-only clustering method based on the tree model is more scalable than the structure-only clustering method based on the path model as the tree similarity measure for the tree model does not need to visit the parents of an element many times. Experimental results also show that the clustering methods perform better with the inclusion of the content information on most test document collections. To further the research, the structural clustering method based on tree model is extended and employed in XML transformation. The results from the experiments show that the proposed transformation process is faster than the traditional transformation system that translates and converts the source XML documents sequentially. Also, the schema matching process of XML transformation produces a better matching result in a shorter time.
Resumo:
Public health research consistently demonstrates the salience of neighbourhood as a determinant of both health-related behaviours and outcomes across the human life course. This paper will report on the findings from a mixed-methods Brisbane-based study that explores how mothers with primary school children from both high and low socioeconomic suburbs use the local urban environment for the purpose of physical activity. Firstly, we demonstrate findings from an innovative methodology using the geographic information systems (GIS) embedded in social media platforms on mobile phones to track locations, resource-use, distances travelled, and modes of transport of the families in real-time; and secondly, we report on qualitative data that provides insight into reasons for differential use of the environment by both groups. Spatial/mapping and statistical data showed that while the mothers from both groups demonstrated similar daily routines, the mothers from the high SEP suburb engaged in increased levels of physical activity, travelled less frequently and less distance by car, and walked more for transport. The qualitative data revealed differences in the psychosocial processes and characteristics of the households and neighbourhoods of the respective groups, with mothers in the lower SEP suburb reporting more stress, higher conflict, and lower quality relationships with neighbours.