942 resultados para EAF plasmid
Resumo:
The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 +/- 0.5) x 10(-14) cm(2) for 2 keVC(+) ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion.
Resumo:
The damage induced in supercoiled plasmid DNA molecules by low energy (< 1 keV u-1) singly and doubly charged carbon ions has been investigated as a function of ion exposure. The production of short linear fragments through multiple double strand breakage is indicated and exponential exposure responses for each of the topoisomers are presented. The damage produced by C2+ is apparent at much lower ion exposures that with C+.
Resumo:
PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.
Resumo:
A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society
Resumo:
Gold nanoparticles (GNPs) are of considerable interest for use as a radiosensitizer, because of their biocompatibility and their ability to increase dose deposited because of their high mass energy absorption coefficient. Their sensitizing properties have been verified experimentally, but a discrepancy between the experimental results and theoretical predictions suggests that the sensitizing effect does not depend solely on gold's superior absorption of energetic photons. This work presents the results of three sets of experiments that independently mapped out the energy dependence of the radiosensitizing effects of GNPs on plasmid DNA suspended in water. Incident photon energy was varied from 11.8 to 80 keV through the use of monochromatic synchrotron and broadband X-rays. These results depart significantly from the theoretical predictions in two ways: First, the sensitization is significantly larger than would be predicted; second, it does not vary with energy as would be predicted from energy absorption coefficients. These results clearly demonstrate that the effects of GNP-enhanced therapies cannot be predicted by considering additional dose alone and that a greater understanding of the processes involved is necessary for the development of future therapeutics.
Resumo:
Rhodococcus rhodochrous NCIMB13064 can dehalogenate and use a wide range of 1-haloalkanes as sole carbon and energy source. The 1-chloroalkane degradation phenotype may be lost by cells spontaneously or after treatment with Mitomycin C. Two laboratory derivatives of the original strain exhibited differing degrees of stability of the chloroalkane degradation marker. Plasmids of approximately 100 kbp (pRTL1) and 80 kbp (pRTL2) have been found in R. rhodochrous NCIMB13064. pRTL1 was shown to be carrying at least some genes for the dehalogenation of 1-chloroalkanes with short chain lengths (C-3 to C-9). However, no connection was found between the utilization of 1-chloroalkanes with longer chain lengths (C-12 to C-18) and the presence of pRTL1. Three separate events were observed to lead to the inability of NCIMB13064 to dehalogenate the short-chain 1-chloroalkanes; the complete loss of pRTL1, the integration of pRTL1 into the chromosome, or the deletion of a 20-kbp fragment in pRTL1. High-frequency transfer of the 1-chloroalkane degradation marker associated with pRTL1 has been demonstrated in bacterial crosses between different derivatives of R. rhodochrous NCIMB13064, (C) 1995 Academic Press, Inc.