967 resultados para Dynamical System
Resumo:
Sessile droplets on a vibrating substrate are investigated focusing on axisymmetric oscillations with pinned contact line. Proper orthogonal decomposition is employed to identify the different modes of droplet shape oscillation and quantitatively assess the droplet oscillation and spectral response. We offer the first experimental evidence for the analogy of an oscillating sessile droplet with a non-linear spring mass damper system. The qualitative and quantitative agreement of amplitude response and phase response curves and limit cycles of the model dynamical system with that observed experimentally suggest that the bulk oscillations in the fundamental mode of a sessile droplet can be very well modeled by a Duffing oscillator with a hard spring, especially near the resonance. The red shift of the resonance peak with an increase in the glycerol concentration is clearly evidenced by both the experimental and predicted amplitude response curves. The influence of various operational parameters such as excitation frequency and amplitude and fluid properties on the droplet oscillation characteristics is adequately captured by the model. (C) 2014 Elsevier Ltd. All rights reserved.
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
By sample specificity it is meant that specimens with the same nominal material parameters and tested under the same environmental conditions may exhibit different behavior with diversified strength. Such an effect has been widely observed in the testing of material failure and is usually attributed to the heterogeneity of material at the mesoscopic level. The degree with which mesoscopic heterogeneity affects macroscopic failure is still not clear. Recently, the problem has been examined by making use of statistical ensemble evolution of dynamical system and the mesoscopic stress re-distribution model (SRD). Sample specificity was observed for non-global mean stress field models, such as the duster mean field model, stress concentration at tip of microdamage, etc. Certain heterogeneity of microdamage could be sensitive to particular SRD leading to domino type of coalescence. Such an effect could start from the microdamage heterogeneity and then be magnified to other scale levels. This trans-scale sensitivity is the origin of sample specificity. The sample specificity leads to a failure probability Phi (N) with a transitional region 0 <
Resumo:
Multiscale coupling attracts broad interests from mechanics, physics and chemistry to biology. The diversity and coupling of physics at different scales are two essential features of multiscale problems in far-from-equilibrium systems. The two features present fundamental difficulties and are great challenges to multiscale modeling and simulation. The theory of dynamical system and statistical mechanics provide fundamental tools for the multiscale coupling problems. The paper presents some closed multiscale formulations, e.g., the mapping closure approximation, multiscale large-eddy simulation and statistical mesoscopic damage mechanics, for two typical multiscale coupling problems in mechanics, that is, turbulence in fluids and failure in solids. It is pointed that developing a tractable, closed nonequilibrium statistical theory may be an effective approach to deal with the multiscale coupling problems. Some common characteristics of the statistical theory are discussed.
Resumo:
Multiscale coupling is ubiquitous in nature and attracts broad interests of scientists from mathematicians, physicists, machinists, chemists to biologists. However, much less attention has been paid to its intrinsic implication. In this paper, multiscale coupling is introduced by studying two typical examples in classic mechanics: fluid turbulence and solid failure. The nature of multiscale coupling in the two examples lies in their physical diversities and strong coupling over wide-range scales. The theories of dynamical system and statistical mechanics provide fundamental methods for the multiscale coupling problems. The diverse multiscale couplings call for unified approaches and might expedite new concepts, theories and disciplines.
Resumo:
Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.
Resumo:
In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots are discussed.
Resumo:
The emergence of cooperation is analyzed in heterogeneous populations where individuals can be classified in two groups according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type, and thus behave under partial information conditions. The interactions between individuals are described by 2 × 2 symmetric games where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The well-posedness conditions of the system are derived. Depending on the parameters of the game, a restriction may exist for the generation length. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that, provided the conditions of well-posedness are verified, the linear stability of monomorphic states in the discrete-time replicator coincides with the one of the continuous case. Specific from the discrete-time case, a relaxed restriction for the generation length is derived, for which larger time-steps can be used without compromising the well-posedness of the replicator system.
Resumo:
Be it a physical object or a mathematical model, a nonlinear dynamical system can display complicated aperiodic behavior, or "chaos." In many cases, this chaos is associated with motion on a strange attractor in the system's phase space. And the dimension of the strange attractor indicates the effective number of degrees of freedom in the dynamical system.
In this thesis, we investigate numerical issues involved with estimating the dimension of a strange attractor from a finite time series of measurements on the dynamical system.
Of the various definitions of dimension, we argue that the correlation dimension is the most efficiently calculable and we remark further that it is the most commonly calculated. We are concerned with the practical problems that arise in attempting to compute the correlation dimension. We deal with geometrical effects (due to the inexact self-similarity of the attractor), dynamical effects (due to the nonindependence of points generated by the dynamical system that defines the attractor), and statistical effects (due to the finite number of points that sample the attractor). We propose a modification of the standard algorithm, which eliminates a specific effect due to autocorrelation, and a new implementation of the correlation algorithm, which is computationally efficient.
Finally, we apply the algorithm to chaotic data from the Caltech tokamak and the Texas tokamak (TEXT); we conclude that plasma turbulence is not a low- dimensional phenomenon.
Resumo:
Nesta dissertação, pretende-se estudar a dinamicidade lexical em textos de domínio político, veiculados pela imprensa escrita durante o período eleitoral de 2010. Para tal, selecionou-se um corpus adequado à pesquisa, fez-se o levantamento de neologismos lexicais nele ocorrentes e procedeu-se à sua descrição. Neste percurso, buscou-se demonstrar a riqueza e a vitalidade dos mecanismos de expansão lexical nos textos estudados, de modo a evidenciar que o léxico, como sistema dinâmico, configura-se como um dos subníveis linguísticos mais abertos à criatividade, revelando também crenças, valores, costumes e hábitos de uma comunidade linguística. Ademais, objetivou-se mostrar que a linguagem utilizada em contextos políticos, visto estar imersa em um ambiente de tensões e embates constantes, é marcadamente caracterizada pelo incessante nascer de novos signos, os quais, por motivações denominativas e/ou estilísticas, desvelam, não raras vezes, intenções e ideologias dos sujeitos-falantes que os criam. Por fim, elaborou-se um glossário com as novas formações encontradas, que oferece subsídios para a observação sistemática da neologia no âmbito do português brasileiro, além de traçar um perfil parcial das alterações político-culturais por que passamos no correr de 2010
Resumo:
Este trabalho apresenta um estudo da estabilidade das equações da inflação morna com um fluido de radiação viscoso. A viscosidade do fluido é proveniente do constante decaimento de partículas neste, devido à dissipação do campo escalar da inflação, o ínflaton.Esta viscosidade, que pode ser volumar ou laminar, é tratada em termos de teorias termodinâmicas fora do equilíbrio. Este estudo se limita às equações de fundo da inflação morna, de modo que somente a viscosidade volumar tem um efeito significativo, sendo a viscosidade laminar importante somente no contexto de perturbações cosmológicas. A descrição da viscosidade em termos de uma termodinâmica fora do equilíbrio, porém, não pode ser realizada univocamente, pois a única informação que temos sobre processos irreversíveis é a segunda lei da termodinâmica. Portanto, parte-se em busca de teorias que estejam de acordo com esta lei e que, por argumentos plausíveis, sejam capazes de descrever o comportamento dos fluxos dissipativos próximo ao equilíbrio. O objetivo deste trabalho é estudar a estabilidade da inflação morna viscosa para teorias causais e não causais para o fluido de radiação com viscosidade, de forma que se possa observar o impacto da viscosidade no regime inflacionário e a relevância de se passar a considerar a causalidade. Para o fluido de radiação, as teorias consideradas são a teoria não causal de Eckart e as teorias causais de Israel-Stewart e de Denicol et al (hidrodinâmica dissipativa causal não linear). Obtém-se que as teorias causais, como era de se esperar, além de serem, por definição, consistentes no tocante à finitude da velocidade de propagação dos fluxos dissipativos, tornam o sistema dinâmico estável para valores de viscosidade mais distantes do equilíbrio. Observa-se também, nitidamente, que a teoria de Denicol et al é a mais robusta nesse sentido. Este trabalho, portanto, visa dar continuidade ao estudo dos efeitos não-isentrópicos na inflação, já que, além da dissipação do ínflaton na inflação morna, o impacto da viscosidade tem despertado bastante interesse.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.
Resumo:
The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.
Resumo:
This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies. © 2007 IEEE.