913 resultados para Dynamic discrete choice models
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
El papel del precio en el sector turístico es especialmente complejo debido a la heterogeneidad existente entre los turistas y, por tanto, a las distintas sensibilidades al precio que muestran. En este sentido, el presente trabajo propone la utilización de modelos de elección discreta para identificar las sensibilidades individuales, turista a turista, y, a continuación, utilizar dichas estimaciones como punto de partida para detectar grupos de turistas con una respuesta similar a los precios. La aplicación empírica realizada en el contexto de la Comunidad Valenciana permite detectar tres segmentos: turistas de precio bajo, turistas indiferentes al precio y turistas de precio alto.
Resumo:
Este artículo de investigación científica y tecnológica estudia la percepción de seguridad en el uso de puentes peatonales, empleando un enfoque sustentado en dos campos principales: el microeconómico y el psicológico. El trabajo hace la estimación simultánea de un modelo híbrido de elección y variables latentes con datos de una encuesta de preferencias declaradas, encontrando mejor ajuste que un modelo mixto de referencia, lo que indica que la percepción de seguridad determina el comportamiento de los peatones cuando se enfrentan a la decisión de usar o no un puente peatonal. Se encontró que el sexo, la edad y el nivel de estudios son atributos que inciden en la percepción de seguridad. El modelo calibrado sugiere varias estrategias para aumentar el uso de puentes peatonales que son discutidas, encontrando que el uso de barreras ocasiona una pérdida de utilidad, en los peatones, que debería ser estudiada como extensión del presente trabajo.
Resumo:
This dissertation investigates customer behavior modeling in service outsourcing and revenue management in the service sector (i.e., airline and hotel industries). In particular, it focuses on a common theme of improving firms’ strategic decisions through the understanding of customer preferences. Decisions concerning degrees of outsourcing, such as firms’ capacity choices, are important to performance outcomes. These choices are especially important in high-customer-contact services (e.g., airline industry) because of the characteristics of services: simultaneity of consumption and production, and intangibility and perishability of the offering. Essay 1 estimates how outsourcing affects customer choices and market share in the airline industry, and consequently the revenue implications from outsourcing. However, outsourcing decisions are typically endogenous. A firm may choose whether to outsource or not based on what a firm expects to be the best outcome. Essay 2 contributes to the literature by proposing a structural model which could capture a firm’s profit-maximizing decision-making behavior in a market. This makes possible the prediction of consequences (i.e., performance outcomes) of future strategic moves. Another emerging area in service operations management is revenue management. Choice-based revenue systems incorporate discrete choice models into traditional revenue management algorithms. To successfully implement a choice-based revenue system, it is necessary to estimate customer preferences as a valid input to optimization algorithms. The third essay investigates how to estimate customer preferences when part of the market is consistently unobserved. This issue is especially prominent in choice-based revenue management systems. Normally a firm only has its own observed purchases, while those customers who purchase from competitors or do not make purchases are unobserved. Most current estimation procedures depend on unrealistic assumptions about customer arriving. This study proposes a new estimation methodology, which does not require any prior knowledge about the customer arrival process and allows for arbitrary demand distributions. Compared with previous methods, this model performs superior when the true demand is highly variable.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
This paper presents a dynamic choice model in the attributespace considering rational consumers that discount the future. In lightof the evidence of several state-dependence patterns, the model isfurther extended by considering a utility function that allows for thedifferent types of behavior described in the literature: pure inertia,pure variety seeking and hybrid. The model presents a stationaryconsumption pattern that can be inertial, where the consumer only buysone product, or a variety-seeking one, where the consumer buys severalproducts simultane-ously. Under the inverted-U marginal utilityassumption, the consumer behaves inertial among the existing brands forseveral periods, and eventually, once the stationary levels areapproached, the consumer turns to a variety-seeking behavior. An empiricalanalysis is run using a scanner database for fabric softener andsignificant evidence of hybrid behavior for most attributes is found,which supports the functional form considered in the theory.
Resumo:
We present an envelope theorem for establishing first-order conditions in decision problems involving continuous and discrete choices. Our theorem accommodates general dynamic programming problems, even with unbounded marginal utilities. And, unlike classical envelope theorems that focus only on differentiating value functions, we accommodate other endogenous functions such as default probabilities and interest rates. Our main technical ingredient is how we establish the differentiability of a function at a point: we sandwich the function between two differentiable functions from above and below. Our theory is widely applicable. In unsecured credit models, neither interest rates nor continuation values are globally differentiable. Nevertheless, we establish an Euler equation involving marginal prices and values. In adjustment cost models, we show that first-order conditions apply universally, even if optimal policies are not (S,s). Finally, we incorporate indivisible choices into a classic dynamic insurance analysis.
Resumo:
The joint and alternative uses of attribute non-attendance and importance ranking data within discrete choice experiments are investigated using data from Lebanon examining consumers’ preferences for safety certification in food. We find that both types of information; attribute non-attendance and importance rankings, improve estimates of respondent utility. We introduce a method of integrating both types of information simultaneously and find that this outperforms models where either importance ranking or non-attendance data are used alone. As in previous studies, stated non-attendance of attributes was not found to be consistent with respondents having zero marginal utility for those attributes
Resumo:
Estimation of demand and supply in differentiated products markets is a central issue in Empirical Industrial Organization and has been used to study the effects of taxes, merges, introduction of new goods, market power, among others. Logit and Random Coefficients Logit are examples of demand models used to study these effects. For the supply side it is generally supposed a Nash equilibrium in prices. This work presents a detailed discussion of these models of demand and supply as well as the procedure for estimation. Lastly, is made an application to the Brazilian fixed income fund market.
Resumo:
Ties among event times are often recorded in survival studies. For example, in a two week laboratory study where event times are measured in days, ties are very likely to occur. The proportional hazards model might be used in this setting using an approximated partial likelihood function. This approximation works well when the number of ties is small. on the other hand, discrete regression models are suggested when the data are heavily tied. However, in many situations it is not clear which approach should be used in practice. In this work, empirical guidelines based on Monte Carlo simulations are provided. These recommendations are based on a measure of the amount of tied data present and the mean square error. An example illustrates the proposed criterion.
Resumo:
The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.
Resumo:
The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models