315 resultados para Dyckia tuberosa
Resumo:
The relative abundances of benthic foraminifers from the Oman margin have been analyzed from ODP Sites 725 and 726 near the upper boundary of the oxygen-minimum zone (OMZ) and 728 near the lower boundary. The relative abundance pattern of the benthic foraminiferal species in the two shallow sites show synchronous changes, which, together with variations in the faunal composition, may be attributed to changes in the location of the upper boundary of the OMZ during the last 7 million years. At the deeper site, the relative abundance pattern shows considerable variation in the faunal composition during the last 8 million years. The strong dominance of the shallow-water species Ammonia beccarii during the early Pliocene at Site 728 suggests a water depth less than 400 m during the early Pliocene and subsequent subsidence during the middle and late Pliocene to the present > 1400 m water depth.
Resumo:
Well-preserved Mesozoic radiolarian faunas have been recovered at four sites of Deep Sea Drilling Project Leg 62. Late Early Cretaceous assemblages, which occur always with foraminifers or calcareous nannoplankton, allow the description of 21 new species, the introduction of a new zone scheme, and calibration of the radiolarian zones with the geochronological scale.
Resumo:
Calcareous dinoflagellates often dominate the dinoflagellate cyst assemblage in Cretaceous to Recent oceanic sediments. However, their distribution in Paleogene sediments has scarcely been studied. The investigation of samples from DSDP Site 356 for their calcareous dinoflagellate content revealed 35 mainly long-ranging taxa. The associations and characteristic wall types (pithonelloid, oblique, radial, tangential) fluctuate quantitatively and qualitatively in distinct stratigraphic patterns. Significant shifts, primarily at the K/T boundary and the Paleocene/Eocene boundary, reflect changes in environmental conditions. Certain dinoflagellates forming calcareous cysts, such as Operculodinella operculata, were well adapted to the relatively rapid change of environmental conditions at the K/T boundary, thus blooming to dominate the carbonate flux to the ocean floor. In contrast to the stable Paleocene associations, Eocene calcareous dinoflagellates show fluctuations in relative abundances. These fluctuations can possibly be attributed to redeposition related to increased seaward transport of specimens, due to strengthened western boundary currents. The flora includes two new genera, one new species, and two new forms: Retesphaera diadema Hildebrand-Habel, Willems et Versteegh, gen. et. sp. nov., Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Sphaerodinella? tuberosa forma elongata Hildebrand-Habel, Willems et Versteegh, comb. et forma nov., Sphaerodinella? tuberosa forma variospinosa Hildebrand-Habel, Willems et Versteegh, comb. et forma nov. Three new combinations are proposed: Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Operculodinella operculata (Bramlette et Martini, 1964) Hildebrand-Habel, Willems et Versteegh, comb. nov., and Sphaerodinella? tuberosa (Kamptner, 1963) Hildebrand-Habel, Willems et Versteegh, comb. nov. The genus Operculodinella Kienel, 1994 is emended.
Resumo:
I recovered well-preserved radiolarian assemblages from the Quaternary sediments drilled at all four sites at the mouth of the Gulf of California during Leg 65. The sites, with positions and water depths averaged for all hole locations per site, are Site 482 - 22°47.4'N, 107°59.6'W; water depth, 3022 meters. Site 483 - 22°53.0'N, 108°44.8' W; water depth, 3070 meters. Site 484 - 23°11.2'N, 108°23.6'W; water depth, 2887 meters. Site 485 - 22°44.9'N, 107°54.2'W; water depth, 2981 meters. The nearly 200 taxa I identified are listed alphabetically in the systematic reference list. The only reliable radiolarian biostratigraphic datum determined for the Quaternary sedimentary section is the highest occurrence of Axoprunum angelinum (Hays) at Sites 483, 484, and 485.
Resumo:
A generally rich radiolarian fauna ranging in age from Quaternary to early Eocene (Zone RP7) was found at five of the eight sites drilled during Ocean Drilling Program (ODP) Leg 199. Of particular interest are the stratigraphically complete assemblages that range in age from middle Miocene (Zone RN5) to early Eocene (Zone RP7), composites of Sites 1218, 1219, and 1220. At the same sites, multisensor track (MST) data show consistent cycles in gamma ray attenuation density, color, and carbonate content that can be correlated on a submeter scale from the early Miocene to early Eocene. In addition, the magnetic reversal records from these three sites allow construction of an absolute timescale. A series of 305 radiolarian morphologic first and last occurrences and evolutionary transitions for radiolarians were determined and correlated directly with the accompanying MST and paleomagnetic data, resulting in a detailed and accurate dating of events. Since many of the bioevents are found at more than one site, it was also possible to test their reliability within the study area. Twelve new species are described: Calocycletta (Calocycletta) anekathen, Dorcadospyris anastasis, Dorcadospyris copelata, Dorcadospyris cyclacantha, Dorcadospyris ombros, Dorcadospyris scambos, Eucyrtidium mitodes, Theocyrtis careotuberosa, Theocyrtis perpumila, Theocyrtis perysinos, Theocyrtis setanios, and Thyrsocyrtis (Pentalacorys) orthotenes.
Resumo:
Eocene-Oligocene radiolarians from Ocean Drilling Program Sites 699, 702, and 703, Leg 114 of the Subantarctic Atlantic were examined in order to extend the tripartite zonation for the recovered cores based on results of similar analysis of Leg 120 submarine sediments from the Indian Ocean. Correlation of the two oceans is made by examining 23 biohorizons and the three zones, Eucyrtidium spinosum, Axoprunum irregularis, and Lychnocanoma conica, in ascending stratigraphic order. One new species, Eucyrtidium nishimurae, is described.
Resumo:
Neogene stratigraphy of the tropical and subtropical Pacific on radiolaria is studied in the book. A detailed comparison of coeval systems from tropics and subtropics is given. A possibility of use of a uniform zonal scale in these areas is proved. Magnitude of changes of complexes on borders of Neogene zones is studied in detail. Six stages in development of radiolarians are identified in the tropics in Neogene. Stratigraphic levels, where the greatest changes of fauna occurred, are natural boundaries of these stages. 72 species of radiolarians (two of which are new) are described in the book.
Resumo:
Recently the International Union of Geological Sciences (Commission on Stratigraphy, Working Group on the Paleogene/Neogene Boundary) proposed that the Oligocene/Miocene boundary be placed at the base of Chron C6Cn2n at 23.8 Ma on the Cande and Kent (1992) magnetic time scale, where it is approximated by planktic foraminifera at the first occurrence of Globorotulia kugleri, and by calcareous nannofossils at the last occurrence of Sphenolithus ciperoensis and the first and last occurrences of Sphenolithus delphix and S. capricornutus. Herein we show that, in terms of radiolarians, the base of Chron C6Cn2n can be correlated with the upper part of the Lychnocanoma elongata Zone between the last occurrence of Artophormis gracilis (23.94 Ma) and the first occurrence of Cyrtocapsella tetrapera (23.69 Ma). Since the proposed stratotype at Lemme-Carrosio (Italy) does not contain radiolarians at the boundary, we re-examined 13 DSDP sites and established the stratigraphic sequence of 29 first and last radiolarian occurrences and one evolutionary transition across the boundary. Nine of these sites contain both calcareous and siliceous microfossils and thus allow for an integrated biostratigraphy. Paleomagnetic stratigraphy is not available for any of the DSDP cores examined. However, use of Hodell and Woodruff's (1994) strontium isotope curve from DSDP Site 289 has permitted calibration of several low latitude microfossil datum levels against the geomagnetic polarity scale. Two new species, Lychnocanoma apodora and Eucyrtidium plesiodiaphanes, are described.
Resumo:
Radiolarians are very rare in all Leg 90 sites. They are relatively more frequent only in Neogene sediments from Sites 586 and 594, and in Eocene sediments at Site 592. In this chapter radiolarian abundances are recorded as comparative percentages for 92 Neogene morphotypes at Site 586B. Relative abundances only are estimated at Sites 592 and 594, where preservation is poor to moderate. A tentative correlation of radiolarian events at Hole 586B and Site 594 shows that only a few species can be found in both tropical and subantarctic areas. New evolutionary lineages are proposed. 1. Middle Miocene eucyrtids like Eucyrtidium teuscheri group evolved into a widespread species (E. teuscheri teuscheri) ranging from middle Miocene to Holocene and a temperate species (E. teuscheri orthoporus) ranging from middle Miocene to early Pleistocene. 2. Phormostichoartus pitomorphus appears to be a temperate descendant of the cosmopolitan P. fistula and disappears in early Pleistocene time. 3. The discovery of Lamprocyrtis daniellae n.sp. calls into question the lineage L. heteroporos -> L. nigriniae. 4. The evolution of Lamprocyclas maritalis from an ancestor group (L. aff. maritalis) is located in the early part of the Pterocanium prismatium Zone.
Resumo:
Site 1237 is located on Nazca Ridge ~140 km off the coast of Peru and thus within the offshore region of the Peru-Chile Current. A total of 83 samples were used to provide an initial radiolarian biostratigraphic framework for Site 1237; radiolarians are present to Sample 202-1237B-19H-2, 58-60 cm (186.45 meters composite depth [mcd]) and are of good to fair abundance and preservation. Site 1237 is influenced by both subtropical and northward-transported southern latitude waters, has 55 ash layers within the uppermost 166 m, and has minimal to gross reworking. Shipboard paleomagnetic results showed that the upper 200 m spanned the last 12 m.y., and in the upper 100 mcd, the paleomagnetic inclination pattern could be directly correlated to the geomagnetic polarity timescale (GPTS). Tropical biostratigraphy was used to establish the zonal boundaries for Site 1237, and the paleomagnetic and radiolarian stratigraphy were well correlated.
Resumo:
Cores recovered from three sites of Leg 116 were studied for radiolarians. Generally, radiolarians were absent from most samples prepared for examination. Moderate to well-preserved radiolarian assemblages are found only in the uppermost one or two cores that were the focus of this study. All of the radiolarian assemblages in the upper cores belong to the Buccinosphaera invaginata Zone of latest Quaternary age. However, there is one stratum where a few Miocene radiolarians are reworked into the modern assemblages. Local seamounts are suggested sources for the reworked radiolarians.
Resumo:
The area in study is characterized by a regional stratigraphic hiatus from Early Miocene to Quaternary. Deposits from Late Eocene to Early Miocene occur on the bottom surface or under a thin sedimentary cover. Ferromanganese nodules, mostly of Oligocene age, formed on surface layers of Tertiary or Quaternary sediments. A detailed micropaleontological study of a block of dense ancient clay coated with a ferromanganese crust was carried out. Composition of found radiolarian and diatomaceous complexes proved that the crust formed in Quaternary on an eroded surface of Late Oligocene clay. In Quaternary Neogene sediments were eroded and washed away by bottom currents. It is likely that the erosion began 0.9-0.7 Ma at the beginning of the "Glacial Pleistocene". The erosion could be initiated by loosening and resuspension of surface sediments resulting from seismic activity generated by strong earthquakes in the Central America subduction zone. The same vibration maintained residual nodules at the seafloor surface. Thus, for the area in study a common reason and a common Quaternary interval for formation of the following features is supposed: a regional stratigraphic hiatus, formation of residual nodule fields, and position of ancient nodules on the surface of Quaternary sediments.