972 resultados para Dual-MISTY structure
Resumo:
Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.
The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.
A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.
High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.
Resumo:
Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.
Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.
Resumo:
Em 2005, a Agência Nacional de Saúde Suplementar (ANS) estabelece o padrão TISS (Troca de Informação na Saúde Suplementar), intercâmbio eletrônico obrigatório entre as operadoras de planos de saúde (cerca de 1500 registradas na ANS) e prestadores de serviços (cerca de 200 mil) sobre os eventos de assistência prestados aos beneficiários. O padrão TISS foi desenvolvido seguindo a estrutura do Comitê ISO/TC215 de padrões para informática em saúde e se divide em quatro partes: conteúdo e estrutura, que compreende a estrutura das guias em papel; representação de conceitos em saúde, que se refere às tabelas de domínio e vocabulários em saúde; comunicação, que contempla as mensagens eletrônicas; e segurança e privacidade, seguindo recomendação do Conselho Federal de Medicina (CFM). Para aprimorar sua metodologia de evolução, essa presente tese analisou o grau de interoperabilidade do padrão TISS segundo a norma ISO 20514 (ISO 20514, 2005) e a luz do modelo dual da Fundação openEHR, que propõe padrões abertos para arquitetura e estrutura do Registro Eletrônico de Saúde (RES). O modelo dual da Fundação openEHR é composto, no primeiro nível, por um modelo de referência genérico e, no segundo, por um modelo de arquétipos, onde se detalham os conceitos e atributos. Dois estudos foram realizados: o primeiro se refere a um conjunto de arquétipos demográficos elaborados como proposta de representação da informação demográfica em saúde, baseado no modelo de referência da Fundação openEHR. O segundo estudo propõe um modelo de referência genérico, como aprimoramento das especificações da Fundação openEHR, para representar o conceito de submissão de autorização e contas na saúde, assim como um conjunto de arquétipos. Por fim, uma nova arquitetura para construção do padrão TISS é proposta, tendo como base o modelo dual da Fundação openEHR e como horizonte a evolução para o RES centrado no paciente
Resumo:
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibito
Resumo:
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.
Resumo:
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.
Resumo:
Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to a planar light-guide circuit silica waveguide or cleaved single-mode optical fibre. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three-step low-pressure MOVPE growth. For the device structure, in the SOA/EAM section, a double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) was incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of the ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3 dB bandwidth is successfully achieved, The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.
Resumo:
We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.
Resumo:
A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 mu m is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees x 18.0 degrees, respectively, resulting in 3.0dB coupling loss With a cleaved single-mode optical fibre.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Solutions for fiber-optical parametric amplifiers (FOPAs) with dispersion fluctuations are derived using matrix operators. On the basis of the propagation matrix product and the hybrid genetic algorithm, we have optimized and compared single- and dual-pump FOPAs with zero-dispersion-wavelength variations. The simulations prove that the design of FOPAs involves multimodal function optimization problems. The numerical results show that dual-pump FOPAs are highly sensitive to dispersion fluctuations whereas dispersion variations have less impact on the gain of single-pump FOPAs. To increase signal gain and reduce ripple, dual-pump FOPAs, instead of single-pump FOPAs, have to be carefully optimized with a suitable multisegment fiber structure rather than a one-segment fiber structure. The different combinations of multisegment fibers can provide highly different gain properties. The increase in gain is at the cost of the ripple.