985 resultados para Drought resistant wheat
Resumo:
Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.
Resumo:
Alopecurus aequalis Sobol. is a common grass weed, which has become increasingly troublesome to control in China wheat fields. One A. aequalis population, collected from Anhui Province China, was suspected to be resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl. This study aimed to establish the cross-resistance pattern using the purified subpopulation and explore the potential targetsite and non-target-site based resistance mechanisms. Sequencing results showed that a single nucleotide change of ATT to AAT was present in acetyl-CoA carboxylase (ACCase) gene of the resistant (R) plants, resulting in an Ile2041Asn amino acid substitution. Besides, another single nucleotide change of CCC to CGC was present in acetolactate synthase (ALS) gene of the R plants, resulting in a Pro197Arg amino acid substitution. The homozygous resistant plants were isolated and the seeds were used in whole-plant herbicide bioassays. Compared with the susceptible (S) population, R population displayed high level resistance to fenoxaprop-P-ethyl and mesosulfuronmethyl. Cross resistance patterns showed that the R population was highly resistant to clodinafop-propargyl, moderately resistant to pyroxsulam and flucarbazoncsodium, lowly resistant to pinoxaden, and susceptible to tralkoxydim, sethoxydim, and isoproturon. The pretreatment of piperonyl butoxide reduced the 50% growth reduction (GR50) value of fenoxaprop-P-ethyl, suggesting that target-site resistance and non-target-site resistance mechanisms were both present in fenoxaprop- P-ethyl-resistance of A. aequalis. This is the first report of ACCase Ile2041Asn and ALS Pro197Arg mutation in A. aequalis.
Resumo:
2013
Resumo:
Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.
Resumo:
The combined efficacy of spinosad and chlorpyrifos-methyl was determined against four storage psocid pests belonging to genus Liposcelis. This research was undertaken because of the increasing importance of these psocids in stored grain and the problem of finding grain protectants to control resistant strains. Firstly, mortality and reproduction were determined for adults exposed to wheat freshly treated with either spinosad (0.5 and 1 mg kg-1) or chlorpyrifos-methyl (2.5, 5 and 10 mg kg-1) or combinations of spinosad and chlorpyrifos-methyl at 30°C and 70% RH. There were significant effects of application rate of spinosad and chlorpyrifos-methyl, both individually and in combination, on adult mortality and progeny reduction of all four psocids. Liposcelis bostrychophila Badonnel and L. decolor (Pearman) responded similarly, with incomplete control of adults and progeny at both doses of spinosad but complete control in all chlorpyrifos-methyl and combined treatments. In L. entomophila (Enderlein) and L. paeta Pearman, however, complete control of adults and progeny was only achieved in the combined treatments, with the exception of spinosad 0.5 mg kg-1 plus chlorpyrifos-methyl 2.5 mg kg-1 against L. entomophila. Next, combinations of spinosad (0.5 and 1 mg kg-1) and chlorpyrifos-methyl (2.5, 5 and 10 mg kg-1) in bioassays after 0, 1.5 and 3 months storage of treated wheat were evaluated. The best treatment was 1 mg kg -1 of spinosad plus 10 mg kg-1 of chlorpyrifos-methyl, providing up to 3 months of protection against infestations of all four Liposcelis spp. on wheat.
Resumo:
Black point in wheat has the potential to cost the Australian industry $A30.4 million a year. It is difficult and expensive to screen for resistance, so the aim of this study was to validate 3 previously identified quantitative trait loci (QTLs) for black point resistance on chromosomes 2B, 4A, and 3D of the wheat variety Sunco. Black point resistance data and simple sequence repeat (SSR) markers, linked to the resistance QTLs and suited to high-throughput assay, were analysed in the doubled haploid population, Batavia (susceptible) × Pelsart (resistant). Sunco and Pelsart both have Cook in their pedigree and both have the Triticum timopheevii translocation on 2B. SSR markers identified for the 3 genetic regions were gwm319 (2B, T. timopheevii translocation), wmc048 (4AS), and gwm341 (3DS). Gwm319 and wmc048 were associated with black point resistance in the validation population. Gwm341 may have an epistatic influence on the trait because when resistance alleles were present at both gwm319 and wmc048, the Batavia-derived allele at gwm341 was associated with a higher proportion of resistant lines. Data are presented showing the level of enrichment achieved for black point resistance, using 1, 2, or 3 of these molecular markers, and the number of associated discarded resistant lines. The level of population enrichment was found to be 1.83-fold with 6 of 17 resistant lines discarded when gwm319 and wmc048 were both used for selection. Interactions among the 3 QTLs appear complex and other genetic and epigenetic factors influence susceptibility to black point. Polymorphism was assessed for these markers within potential breeding material. This indicated that alternative markers to wmc048 may be required for some parental combinations. Based on these results, marker-assisted selection for the major black point resistance QTLs can increase the rate of genetic gain by improving the selection efficiency and may facilitate stacking of black point resistances from different sources.
Resumo:
Winter cereal cropping is marginal in south-west Queensland because of low and variable rainfall and declining soil fertility. Increasing the soil water storage and the efficiency of water and nitrogen (N) use is essential for sustainable cereal production. The effect of zero tillage and N fertiliser application on these factors was evaluated in wheat and barley from 1996 to 2001 on a grey Vertosol. Annual rainfall was above average in 1996, 1997, 1998 and 1999 and below average in 2000 and 2001. Due to drought, no crop was grown in the 2000 winter cropping season. Zero tillage improved fallow soil water storage by a mean value of 20 mm over 4 years, compared with conventional tillage. However, mean grain yield and gross margin of wheat were similar under conventional and zero tillage. Wheat grain yield and/or grain protein increased with N fertiliser application in all years, resulting in an increase in mean gross margin over 5 years from $86/ha, with no N fertiliser applied, to $250/ha, with N applied to target ≥13% grain protein. A similar increase in gross margin occurred in barley where N fertiliser was applied to target malting grade. The highest N fertiliser application rate in wheat resulted in a residual benefit to soil N supply for the following crop. This study has shown that profitable responses to N fertiliser addition in wheat and barley can be obtained on long-term cultivated Vertosols in south-west Queensland when soil water reserves at sowing are at least 60% of plant available water capacity, or rainfall during the growing season is above average. An integrative benchmark for improved N fertiliser management appears to be the gross margin/water use of ~$1/ha.mm. Greater fallow soil water storage or crop water use efficiency under zero tillage has the potential to improve winter cereal production in drier growing seasons than experienced during the period of this study.
Resumo:
Pratylenchus thornei is widespread throughout the wheat-growing regions in Australia and overseas and can cause yield losses of up to 70% in some intolerant cultivars. The most effective forms of management of P. thornei populations are crop rotation and plant breeding. There have been no wheat accessions identified as completely resistant to P. thornei, therefore breeding programs have used moderately resistant parents. The objective of the present research was to evaluate 274 Iranian landrace wheats for resistance to P. thornei and identify accessions with resistance superior to the current best resistance source (GS50a). Plants were grown in P. thornei inoculated soil under controlled conditions in a glasshouse pot experiment for 16 weeks. Ninety-two accessions found to be resistant or moderately so were retested in a second experiment. From combined analysis of these experiments, 34 accessions were identified as resistant with reproduction factors (final population per kg soil/initial inoculum rate per kg soil) <= 1. In total, 25 accessions were more resistant than GS50a, with AUS28470 significantly (P < 0.05) more resistant. The resistant Iranian landraces identified in the present study are a valuable untapped genetic pool offering improved levels of P. thornei resistance over current parents in Australian wheat-breeding programs.
Resumo:
Resistance to the root-lesion nematode Pratylenchus thornei was sought in wheat from the West Asia and North Africa (WANA) region in the Watkins Collection (148 bread and 139 durum wheat accessions) and the McIntosh Collection (59 bread and 43 durum wheat accessions). It was considered that landraces from this region, encompassing the centres of origin of wheat and where P. thornei also occurs, could be valuable sources of resistance for use in wheat breeding. Resistance was determined by number of P. thornei/kg soil after the growth of the plants in replicated glasshouse experiments. On average, durum accessions produced significantly lower numbers of P. thornei than bread wheat accessions in both the Watkins and McIntosh Collections. Selected accessions with low P. thornei numbers were re-tested and 13 bread wheat and 10 durum accessions were identified with nematode numbers not significantly different from GS50a, a partially resistant bread wheat line used as a reference standard. These resistant accessions, which originated in Iran, Iraq, Syria, Egypt, Sudan, Morocco, and Tunisia, represent a resource of resistance genes in the primary wheat gene pool, which could be used in Australian wheat breeding programs to reduce the economic loss from P. thornei.
Resumo:
The root-lesion nematode Pratylenchus thornei causes substantial loss to bread wheat production in the northern grain region of Australia and other parts of the world. West Asia and North Africa (WANA) wheat accessions with partial resistance to P. thornei were analysed for mode of inheritance in a half-diallel crossing design of F1 hybrids (10 parents) and F2 populations (7 parents). General combining ability was more important than specific combining ability as indicated by components of variance ratios of 0.93 and 0.95 in diallel ANOVA of the F1 and F2 generations, respectively. General combining ability values of the 'resistant' parents were predictive of the mean nematode numbers of their progeny in crosses with the susceptible Australian cv. Janz at the F1 (R populations showed relatively continuous distributions. Heritability was 0.68 for F2 populations in the half-diallel of resistant parents and 0.82-0.92 for 5 'resistant' parent/Janz doubled-haploid populations (narrow-sense heritability on a line mean basis). The results indicate polygenic inheritance of P. thornei resistance with a minimum of from 2 to 6 genes involved in individual F populations of 5 resistant parents crossed with Janz. Morocco 426 and Iraq 43 appear to be the best of the parents tested for breeding for resistance to P. thornei. None of the P. thornei-resistant WANA accessions was resistant to Pratylenchus neglectus.
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
Phosphine fumigation is commonly used to disinfest grain of insect pests. In fumigations which allow insect survival the question of whether sublethal exposure to phosphine affects reproduction is important for predicting population recovery and the spread of resistance. Two laboratory experiments addressed this question using strongly phosphine resistant lesser grain borer, Rhyzopertha dominica (F.). Offspring production was examined in individual females which had been allowed to mate before being fumigated for 48 h at 0.25 mg L -1. Surviving females produced offspring but at a reduced rate during a two-week period post fumigation compared to unfumigated controls. Cumulative fecundity of fumigated females from 4 weeks of oviposition post fumigation was 25% lower than the cumulative fecundity of unfumigated females. Mating potential post fumigation was examined when virgin adults (either or both sexes) were fumigated individually (48 h at 0.25 mg L -1) and the survivors were allowed to mate and reproduce in wheat. All mating combinations produced offspring but production in the first week post fumigation was significantly suppressed compared to the unfumigated controls. Offspring suppression was greatest when both sexes were exposed to phosphine followed by the pairing of fumigated females with unfumigated males and the least suppression was observed when males only were fumigated. Cumulative fecundity from 4 weeks oviposition post fumigation of fumigated females paired with fumigated males was 17% lower than the fecundity of unfumigated adult pairings. Both of these experiments confirmed that sublethal exposure to phosphine can reduce fecundity in R. dominica.
Resumo:
Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.
Resumo:
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.
Resumo:
The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A (m) -genome) and 5 (24%) Triticum urartu (A (u) -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.