992 resultados para Driving simulation
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Entre los problemas medioambientales más trascendentales para la sociedad, se encuentra el del cambio climático así como el de la calidad del aire en nuestras áreas metropolitanas. El transporte por carretera es uno de los principales causantes, y como tal, las administraciones públicas se enfrentan a estos problemas desde varios ángulos: Cambios a modos de transporte más limpios, nuevas tecnologías y combustibles en los vehículos, gestión de la demanda y el uso de tecnologías de la información y la comunicación (ICT) aplicadas al transporte. En esta tesis doctoral se plantea como primer objetivo el profundizar en la comprensión de cómo ciertas medidas ICT afectan al tráfico, las emisiones y la propia dinámica de los vehículos. El estudio se basa en una campaña de recogida de datos con vehículos flotantes para evaluar los impactos de cuatro medidas concretas: Control de velocidad por tramo, límites variables de velocidad, limitador de velocidad (control de crucero) y conducción eficiente (eco‐driving). Como segundo objetivo, el estudio se centra en la conducción eficiente, ya que es una de las medidas que más ahorros de combustible presenta a nivel individual. Aunque estas reducciones están suficientemente documentadas en la literatura, muy pocos estudios se centran en estudiar el efecto que los conductores eficientes pueden tener en el flujo de tráfico, y cuál sería el impacto si se fuera aumentando el porcentaje de este tipo de conductores. A través de una herramienta de microsimulación de tráfico, se han construido cuatro modelos de vías urbanas que se corresponden con una autopista urbana, una arteria, un colector y una vía local. Gracias a los datos recogidos en la campaña de vehículos flotantes, se ha calibrado el modelo, tanto el escenario base como el ajuste de parámetros de conducción para simular la conducción eficiente. En total se han simulado 72 escenarios, variando el tipo de vía, la demanda de tráfico y el porcentaje de conductores eficientes. A continuación se han calculado las emisiones de CO2 and NOx mediante un modelo de emisiones a nivel microscópico. Los resultados muestran que en escenarios con alto porcentaje de conductores eficientes y altas demandas de tráfico las emisiones aumentan. Esto se debe a que las mayores distancias de seguridad y las aceleraciones y frenadas suaves hacen que aumente la congestión, produciendo así mayores emisiones a nivel global. Climate change and the reduced air quality in our metropolitan areas are two of the main environmental problems that the society is addressing currently. Being road transportation one of the main contributors, public administrations are facing these problems from different points of view: shift to cleaner modes, new fuels and vehicle technologies, demand management and the use of information and communication technologies (ICT) applied to transportation. The first objective of this thesis is to understand how certain ICT measures affect traffic, emissions and vehicle dynamics. The study is based on a data collection campaign with floating vehicles to evaluate the impact of four specific measures: section speed control, variable speed limits, cruise control and eco‐driving. The second objective of the study focuses on eco‐driving, as it is one of the measures that present the largest fuel savings at an individual level. Although these savings are well documented in the literature, few studies focus on how ecodrivers affect the surrounding vehicles and the traffic, and what would be the impact in case of different eco‐drivers percentage. Using a traffic micro‐simulation tool, four models in urban context have been built, corresponding to urban motorway, urban arterial, urban collector and a local street. Both the base‐case and the parameters setting to simulate eco‐driving have been calibrated with the data collected through floating vehicles. In total 72 scenarios were simulated, varying the type of road, traffic demand and the percentage of eco‐drivers. Then, the CO2 and NOx emissions have been estimated through the use of an emission model at microscopic level. The results show that in scenarios with high percentage of co‐drivers and high traffic demand the emissions rise. Higher headways and smooth acceleration and decelerations increase congestion, producing higher emissions globally.
Resumo:
Proper management of supply chains is fundamental in the overall system performance of forestbased activities. Usually, efficient management techniques rely on a decision support software, which needs to be able to generate fast and effective outputs from the set of possibilities. In order to do this, it is necessary to provide accurate models representative of the dynamic interactions of systems. Due to forest-based supply chains’ nature, event-based models are more suited to describe their behaviours. This work proposes the modelling and simulation of a forestbased supply chain, in particular the biomass supply chain, through the SimPy framework. This Python based tool allows the modelling of discrete-event systems using operations such as events, processes and resources. The developed model was used to access the impact of changes in the daily working plan in three situations. First, as a control case, the deterministic behaviour was simulated. As a second approach, a machine delay was introduced and its implications in the plan accomplishment were analysed. Finally, to better address real operating conditions, stochastic behaviours of processing and driving times were simulated. The obtained results validate the SimPy simulation environment as a framework for modelling supply chains in general and for the biomass problem in particular.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Decreasing vehicle understeer was strongly associated with the likelihood of control loss following both the unexpected and expected tire failures. Knowledge of the imminent tread separation reduced the overall probability of control loss from 55% to 20% and had a significant effect on how quickly drivers responded as well as on the nature of their initial responses (i.e., steering orbraking). Driver age was marginally associated with increased likelihood of vehicle control loss, but only on unexpected trials. Vehicle speed at the time of first steering input also contributed to the probability of control loss. Neither the location of the tire that failed (left rear vs. right rear) nor the specific instructions about how best to respond to the tread separation influenced the probability of control loss. Differences associated with vehicle understeer conditions observed in the present study were large and consistent, independent of driver expectations and across driver age groups. It is thus fair to conclude that in the event of a complete rear-tire detread, the increased difficulty in vehicle handling and the associated increased likelihood of loss of vehicle control with decreasing vehicle understeer generalize to real-world driving.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.
Resumo:
Adult pedestrian accident data has demonstrated that the risk of being killed or seriously injured varies with age and gender. A range of factors affecting road crossing choices of 218 adults aged 17-90+ were examined in a simulation study using filmed real traffic. With increasing age, women were shown to make more unsafe crossing decisions, to leave small safety margins and to become poorer at estimating their walking speed. However, the age effects on all of these were ameliorated by driving experience. Men differed from women in that age was not a major factor in predicting unsafe crossing decisions. Rather, reduced mobility was the key factor, leading them to make more unsafe crossings and delay longer in leaving the kerb. For men, driving experience did not predict unsafe road crossing decisions. Although male drivers were more likely to look both ways before crossing than male non-drivers, the impact of being a driver had a negative effect in terms of smaller safety margins and delay in leaving the kerb. The implications of the different predictor variables for men and women for unsafe road crossing are discussed and possible reasons for the differences explored.
Resumo:
In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.