960 resultados para Driedblood spots
Resumo:
On the possibility that the universe's matter density is low (Ohm(0) < 1), cosmologies can be considered with the metric of Friedmann's open universe but with closed hyperbolic manifolds as the physical three-space. These models have nontrivial spatial topology, with the property of producing multiple images of cosmic sources. Here a fit is attempted of 10 of these models to the physical cold and hot spots found by Cayon & Smoot in the COBE/DMR maps. These spots are interpreted as early, distant images of much nearer sources of inhomogeneity. The source for one of the cold spots is seen as the seed of a known supercluster.
Resumo:
The aim of this study was to determine the prevalence of enamel white spots and the quality of oral hygiene in children up to 36 months old, in municipalities with different fluoride levels in the water supply, analyzing the contribution of several variables. After approval of the Ethics Committee, the parents signed an informed consent form and were interviewed about their educational level, economic classification of the family, nursing habits, use of toothpaste, access to dental service and other information. The children were clinically examined using the same codes and criteria established by the WHO (World Health Organization) and ADA (American Dental Association). The data were processed and analyzed with the Epi-info software program, version 3.2, and Microsoft Excel. Fisher's exact test (p<0.05) was applied to assess the association among the variables. The enamel white spot prevalence was 30.8% and the age group, duration of the bedtime milk feeding habit, age of initial practice of oral hygiene and presence of caries lesions with cavitation were considered statistically significant with regard to enamel white spot prevalence (p < 0.05). No association was found between oral hygiene quality and the study variables. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem
Resumo:
Soil CO2 efflux is the primary source of CO2 emissions from terrestrial ecosystems to the atmosphere. The rates of this flux vary in time and space producing hot moments (sudden temporal high fluxes) and hot spots (spatially defined high fluxes), but these high reaction rates are rarely studied in conjunction with each other. We studied temporal and spatial variation of soil CO2 efflux in a water-limited Mediterranean ecosystem in Baja California, Mexico. Soil CO2 efflux increased 522% during a hot moment after rewetting of soils following dry summer months. Monthly precipitation was the primary driver of the seasonal trend of soil CO2 efflux (including the hot moment) and through changes in soil volumetric water content (VWC) it influenced the relationship between CO2 efflux and soil temperature. Geostatistical analyses showed that the spatial dependence of soil CO2 efflux changed between two contrasting seasons (dry and wet). During the dry season high soil VWC was associated with high soil CO2 efflux, and during the wet season the emergence of a hot spot of soil CO2 efflux was associated with higher root biomass and leaf area index. These results suggest that sampling designs should accommodate for changes in spatial dependence of measured variables. The spatio-temporal relationships identified in this study are arguably different from temperate ecosystems where the majority of soil CO2 efflux research has been done. This study provides evidence of the complexity of the mechanisms controlling the spatio-temporal variability of soil CO2 efflux in water-limited ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We live in a world of chemicals. Unfortunately, some of the characteristics that make household chemical products the most useful are the same qualities that lead to trouble when these products are carelessly handled. A chemical stain or spot is a serious kind of stain that is appearing with increasing frequency and is different from ordinary stains. This type of discoloration or color is caused by a variety of chemical ingredients contains in dozens of common household products. This NebFact discusses the different chemical spots, stains and discolorations that are found in your home furnishings.
Resumo:
The classic approach to gene discovery relies on the construction of linkage maps. We report the first molecular-based linkage map for Drosophila mediopunctata, a neotropical species of the tripunctata group. Eight hundred F2 individuals were genotyped at 49 microsatellite loci, resulting in a map that is approximate to 450 centimorgans long. Five linkage groups were detected, and the species' chromosomes were identified through cross-references to BLASTn searches and Muller elements. Strong synteny was observed when compared with the Drosophila melanogaster chromosome arms, but little conservation in the gene order was seen. The incorporation of morphological data corresponding to the number of central abdominal spots on the map was consistent with the expected location of a genomic region responsible for the phenotype on the second chromosome.
Resumo:
We report the synthesis of silver-gold nanotubes containing hot spots along their surface. The Ag-Au nanotubes exhibited exceptional SERS properties compared to silver nanowires, enabling the detection of crystal violet in the 10(-10) M regime, as well as 9-nitroanthracene and benzo[a] pyrene at 3.3 x 10(-7) M.
Resumo:
The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.
Resumo:
Urban centers significantly contribute to anthropogenic air pollution, although they cover only a minor fraction of the Earth's land surface. Since the worldwide degree of urbanization is steadily increasing, the anthropogenic contribution to air pollution from urban centers is expected to become more substantial in future air quality assessments. The main objective of this thesis was to obtain a more profound insight in the dispersion and the deposition of aerosol particles from 46 individual major population centers (MPCs) as well as the regional and global influence on the atmospheric distribution of several aerosol types. For the first time, this was assessed in one model framework, for which the global model EMAC was applied with different representations of aerosol particles. First, in an approach with passive tracers and a setup in which the results depend only on the source location and the size and the solubility of the tracers, several metrics and a regional climate classification were used to quantify the major outflow pathways, both vertically and horizontally, and to compare the balance between pollution export away from and pollution build-up around the source points. Then in a more comprehensive approach, the anthropogenic emissions of key trace species were changed at the MPC locations to determine the cumulative impact of the MPC emissions on the atmospheric aerosol burdens of black carbon, particulate organic matter, sulfate, and nitrate. Ten different mono-modal passive aerosol tracers were continuously released at the same constant rate at each emission point. The results clearly showed that on average about five times more mass is advected quasi-horizontally at low levels than exported into the upper troposphere. The strength of the low-level export is mainly determined by the location of the source, while the vertical transport is mainly governed by the lifting potential and the solubility of the tracers. Similar to insoluble gas phase tracers, the low-level export of aerosol tracers is strongest at middle and high latitudes, while the regions of strongest vertical export differ between aerosol (temperate winter dry) and gas phase (tropics) tracers. The emitted mass fraction that is kept around MPCs is largest in regions where aerosol tracers have short lifetimes; this mass is also critical for assessing the impact on humans. However, the number of people who live in a strongly polluted region around urban centers depends more on the population density than on the size of the area which is affected by strong air pollution. Another major result was that fine aerosol particles (diameters smaller than 2.5 micrometer) from MPCs undergo substantial long-range transport, with about half of the emitted mass being deposited beyond 1000 km away from the source. In contrast to this diluted remote deposition, there are areas around the MPCs which experience high deposition rates, especially in regions which are frequently affected by heavy precipitation or are situated in poorly ventilated locations. Moreover, most MPC aerosol emissions are removed over land surfaces. In particular, forests experience more deposition from MPC pollutants than other land ecosystems. In addition, it was found that the generic treatment of aerosols has no substantial influence on the major conclusions drawn in this thesis. Moreover, in the more comprehensive approach, it was found that emissions of black carbon, particulate organic matter, sulfur dioxide, and nitrogen oxides from MPCs influence the atmospheric burden of various aerosol types very differently, with impacts generally being larger for secondary species, sulfate and nitrate, than for primary species, black carbon and particulate organic matter. While the changes in the burdens of sulfate, black carbon, and particulate organic matter show an almost linear response for changes in the emission strength, the formation of nitrate was found to be contingent upon many more factors, e.g., the abundance of sulfuric acid, than only upon the strength of the nitrogen oxide emissions. The generic tracer experiments were further extended to conduct the first risk assessment to obtain the cumulative risk of contamination from multiple nuclear reactor accidents on the global scale. For this, many factors had to be taken into account: the probability of major accidents, the cumulative deposition field of the radionuclide cesium-137, and a threshold value that defines contamination. By collecting the necessary data and after accounting for uncertainties, it was found that the risk is highest in western Europe, the eastern US, and in Japan, where on average contamination by major accidents is expected about every 50 years.
Resumo:
Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are direct alcohol consumption markers widely used nowadays for clinical and forensic applications. They are detectable in blood and urine even after consumption of trace amounts of ethanol and for a longer time frame, being detectable even when no more ethanol is present. The instability of EtG against bacterial degradation in contaminated urine samples and/or the possible postcollection synthesis of this metabolite in samples containing, e.g., Escherichia coli and ethanol, may cause false identification of alcohol uptake. Therefore, it is of paramount importance to constrict these error sources by inhibition of any bacterial growth causing hydrolization or synthesis of EtG. This study evaluates a new method of collecting urine samples on filter paper, dried urine spots (DUS), for simultaneous detection of EtG, EtS and creatinine, having the great advantage of inhibiting bacterial activity. In addition, a method validation for the determination of EtG and EtS in DUS was performed according to the FDA guidelines. Sterile-filtered urine was spiked with EtG and EtS, inoculated with E. coli and incubated. Liquid and dried urine samples were collected after various time intervals up to 96 h. Liquid samples were frozen immediately after collection, whereas aliquots for DUS were pipetted onto filter paper, allowed to dry and stored at RT until analysis 1 week after. The specimens were analyzed by LC-ESI-MS/MS. As expected, degradation of EtG, but not of EtS, was observed in contaminated liquid urine samples. However, the specimens collected on filter paper and stored at RT showed no degradation during storage. Therefore, collecting urine samples on filter paper for EtG and EtS analysis turns out to be a reliable method to avoid bacterial degradation of EtG and EtS, and consequently, stabilization of these ethanol metabolites is achieved. In addition, simultaneous measurement of creatinine content as an indicator of urine dilution helps to interpret the results. Method validation for EtG and EtS in DUS was satisfactory, showing the linearity of the calibration curves in the studied concentration range, good precision, accuracy and selectivity.
Resumo:
Newborn screening (NBS) for Cystic Fibrosis (CF) has been introduced in many countries, but there is no ideal protocol suitable for all countries. This retrospective study was conducted to evaluate whether the planned two step CF NBS with immunoreactive trypsinogen (IRT) and 7 CFTR mutations would have detected all clinically diagnosed children with CF in Switzerland.
Resumo:
In many animals, males congregate in leks that females visit for the sole purpose of mating. We observed male and female behavior on 3 different-sized leks of the bower-building cichlid fish Nyassachromis cf. microcephalus to test predictions of 3 prominent lek models: the "hotshot," "hot spot," and "female preference" models. In this system, we were able to refine these predictions by distinguishing between indirect mate choice, by which females restrict their set of potential mates in the absence of individual male assessment, and direct mate choice, by which females assess males and their territories through dyadic behavioral interactions. On no lek were males holding central territories favored by indirect or direct mate choice, contrary to the prediction of the hotshot model that leks form because inferior males establish territories surrounding hotshot males preferred by females. Average female encounter rate of males increased with lek size, a pattern typically interpreted as evidence that leks form through female preference for lekking males, rather than because males congregate in hot spots of high female density. Female propensity to engage in premating behavior once courted did not increase with lek size, suggesting female preference for males on larger leks operated through indirect choice rather than direct choice based on individual assessment. The frequency of male-male competitive interactions increased with lek size, whereas their foraging rate decreased, implying a cost to males maintaining territories on larger leks. Together these data most strongly support the female preference model, where females may benefit through indirect mate choice for males able to meet the competitive cost of occupying larger leks.