982 resultados para Drainage ditch
Resumo:
Selostus: Typen ja fosforin kulkeutuminen pinta- ja salaojavalunnassa lietelannalla ja NKP-lannoitteella lannoitetulta nurmelta
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Resumo:
Tiivistelmä: Kasvillisuuden sukkessio ja monimuotoisuus Teuravuoman koeojitusalueella Pohjois-Suomessa
Resumo:
Kunnostusojitustarpeen ennustaminen ojitusalueilla
Resumo:
Tiivistelmä: Kunnostusojituksen vaikutus rämeiden ravinnetilaan
Resumo:
Audit report on the Missouri Valley Drainage District for the year ended June 30, 2012
Resumo:
Tiivistelmä: Karttoja suo-ojitusten vaikutuksesta Suomen ilmastoon
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made.
Resumo:
Selostus : Kilpailukykyinen menetelmä pistemäisten fosforikuormitusalueiden paikantamiseen
Resumo:
BACKGROUND: In an experimental setting, the performance of the LifeBox, a new portable extracorporeal membrane oxygenator (ECMO) system suitable for patient transport, is presented. Standard rectilinear percutaneous cannulae are normally employed for this purpose, but have limited flow and pressure delivery due to their rigid structure. Therefore, we aimed to determine the potential for flow increase by using self-expanding venous cannulae. METHODS: Veno-arterial bypass was established in three pigs (40.6+/-5.1 kg). The venous line of the cardiopulmonary bypass was established by cannulation of the external jugular vein. The arterial side of the circulation was secured by cannulation of the common carotid artery. Two different venous cannulae (SmartCanula 18/36F 430mm and Biomedicus 19F) were examined for their functional integrity when used in conjunction with the centrifugal pump (500-3000 RPM) of the LifeBox system. RESULTS: At 1500, 2000, 2500, and 3000 RPM, the blood flow increased steadily for each cannula, but remained higher in the self-expanding cannula. That is, the 19F rectilinear cannula achieved a blood flow of 0.93+/-0.14, 1.47+/-0.37, 1.9+/-0.68, and 1.5+/-0.9 l/min, respectively, and the 18/36F self-expanding cannula achieved 1.1+/-0.1, 1.9+/-0.33, 2.8+/-0.39 and 3.66+/-0.52 l/min. However, when tested for venous line pressure, the standard venous cannula achieved -29+/-10.7mmHg while the self-expanding cannula achieved -13.6 +/-4.3mmHg at 1500 RMP. As the RPM increased from 2500 to 3000, the venous line pressure accounted for -141.9+/-20 and -98+/-7.3mmHg for the 19F rectilinear cannula and -30.6+/-6.4 and -45+/-11.6mmHg for the self-expanding cannula. CONCLUSION: The self-expanding cannula exhibited superior venous drainage ability when compared to the performance of the standard rectilinear cannula with the use of the LifeBox. The flow rate achieved was approximately 40% greater than the standard drainage device, with a maximal pump flow recorded at 4.3l/min.
Resumo:
Tiivistelmä: Kunnostusojituksen pitkän ajan vaikutus valumaveden ominaisuuksiin
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.