977 resultados para Double-strand Break


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm(3) mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm(3) mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs. (C) 1999 by Radiation Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To determine whether the non-random distributions of DNA double-strand breaks in cells observed after alpha-particle irradiation are related to the higher-order structure of the chromatin within the nucleus.